Effective Cascade Dual-Decoder Model for Joint Entity and RelationExtraction. [submitted]
All experiments are conducted with an NVDIA GeForce RTX 2080 Ti.
The main requirements are:
- python = 3.6
- torch = 1.1.0
- transformers = 3.5.1 (Online)
-
Partial Match:
python train.py --data_dir=dataset/WebNLG-P/data --id=WebNLG-P --classemb_num=214 --entityclass_num=2 --relationclass_num=171
-
Exact Match:
python othertrain.py --data_dir=dataset/WebNLG-E/data --id=WebNLG-E --classemb_num=255 --entityclass_num=2 --relationclass_num=211
-
Partial Match:
python othereval.py --model_dir=./saved_models/WebNLG-P --data_dir=dataset/WebNLG-P/data
-
Exact Match:
python eval.py --model_dir=./saved_models/WebNLG-E --data_dir=dataset/WebNLG-E/data
Codes are adapted from the repositories of Joint Extraction of Entities and Relations Based on a Novel Decomposition and A Novel Cascade Binary Tagging Framework for Relational Triple Extraction.