NEWS: I am looking for a Collaborator esp who does research in NLP, Computer Vision and Reinforcement learning. If you are not a researcher, but you are willing, contact me. Email me: [email protected]
This repository provides state-of-the-art (SoTA) results for all machine learning problems. We do our best to keep this repository up to date. If you do find a problem's SoTA result is out of date or missing, please raise this as an issue (with this information: research paper name, dataset, metric, source code and year). We will fix it immediately.
You can also submit this Google Form if you are new to Github.
This is an attempt to make one stop for all types of machine learning problems state of the art result. I can not do this alone. I need help from everyone. Please submit the Google form/raise an issue if you find SOTA result for a dataset. Please share this on Twitter, Facebook, and other social media.
This summary is categorized into:
- Supervised Learning
- Semi-supervised Learning
- Computer Vision
- Unsupervised Learning
- Speech
- Computer Vision
- NLP
- Transfer Learning
- Reinforcement Learning
Research Paper | Datasets | Metric | Source Code | Year |
---|---|---|---|---|
DYNAMIC EVALUATION OF NEURAL SEQUENCE MODELS |
|
|
Pytorch | 2017 |
Averaged Stochastic Gradient Descent with Weight Dropped LSTM or QRNN |
|
|
Pytorch | 2017 |
FRATERNAL DROPOUT |
|
|
Pytorch | 2017 |
Factorization tricks for LSTM networks | One Billion Word Benchmark | Perplexity: 23.36 | Tensorflow | 2017 |
Research Paper | Datasets | Metric | Source Code | Year |
---|---|---|---|---|
WEIGHTED TRANSFORMER NETWORK FOR MACHINE TRANSLATION |
|
|
2017 | |
Attention Is All You Need |
|
|
2017 | |
NON-AUTOREGRESSIVE NEURAL MACHINE TRANSLATION |
|
|
2017 | |
Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets |
|
2017 |
Research Paper | Datasets | Metric | Source Code | Year |
---|---|---|---|---|
Learning Structured Text Representations | Yelp | Accuracy: 68.6 | 2017 | |
Attentive Convolution | Yelp | Accuracy: 67.36 | 2017 |
Leader board:
Stanford Natural Language Inference (SNLI)
Research Paper | Datasets | Metric | Source Code | Year |
---|---|---|---|---|
NATURAL LANGUAGE INFERENCE OVER INTERACTION SPACE | Stanford Natural Language Inference (SNLI) | Accuracy: 88.9 | Tensorflow | 2017 |
Leader Board
Research Paper | Datasets | Metric | Source Code | Year |
---|---|---|---|---|
Interactive AoA Reader+ (ensemble) | The Stanford Question Answering Dataset |
|
NOT YET AVAILABLE | 2017 |
Research Paper | Datasets | Metric | Source Code | Year |
---|---|---|---|---|
Named Entity Recognition in Twitter using Images and Text |
Ritter | F-measure: 0.59 | NOT YET AVAILABLE | 2017 |
Research Paper | Datasets | Metric | Source Code | Year |
---|---|---|---|---|
Cutting-off redundant repeating generations for neural abstractive summarization |
|
|
NOT YET AVAILABLE | 2017 |
Convolutional Sequence to Sequence |
|
|
PyTorch | 2017 |
Research Paper | Datasets | Metric | Source Code | Year |
---|---|---|---|---|
Dynamic Routing Between Capsules |
|
|
2017 | |
High-Performance Neural Networks for Visual Object Classification |
|
|
2011 | |
ShakeDrop regularization |
|
|
2017 | |
Aggregated Residual Transformations for Deep Neural Networks |
|
|
2017 | |
Dynamic Routing Between Capsules |
|
|
2017 | |
Squeeze-and-Excitation Networks |
|
|
2017 | |
Aggregated Residual Transformations for Deep Neural Networks |
|
|
2016 |
Research Paper | Datasets | Metric | Source Code | Year |
---|---|---|---|---|
Mask R-CNN |
|
|
2017 |
Research Paper | Datasets | Metric | Source Code | Year |
---|---|---|---|---|
The Microsoft 2017 Conversational Speech Recognition System | Switchboard Hub5'00 | WER: 5.1 | NOT FOUND | 2017 |
Research Paper | Datasets | Metric | Source Code | Year |
---|---|---|---|---|
DISTRIBUTIONAL SMOOTHINGWITH VIRTUAL ADVERSARIAL TRAINING |
|
|
Theano | 2016 |
Virtual Adversarial Training: a Regularization Method for Supervised and Semi-supervised Learning |
|
|
2017 | |
Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in vitro |
|
|
Matconvnet | 2017 |
Research Paper | Datasets | Metric | Source Code | Year |
---|---|---|---|---|
PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION | Unsupervised CIFAR 10 | Inception score: 8.80 | Theano | 2017 |
Research Paper | Datasets | Metric | Source Code | Year |
---|---|---|---|---|
UNSUPERVISED MACHINE TRANSLATION USING MONOLINGUAL CORPORA ONLY |
|
|
2017 |
Email: [email protected]