Skip to content

An overview of analysis pipeline to metagenome of each lake samples at different trophic levels, including the steps of sampling, DNA Extraction, sequencing, assembly, CDS finding, CDS abundance calculating, taxonomy, functional assignment and statistical analysis

Notifications You must be signed in to change notification settings

Vikash84/Yun-Gui_plateau_lake

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 

Repository files navigation

The Analysis Pipeline to Metagenome of Planktonic Microbiota in Lakes at Different Trophic Levels

The pipeline is developed by by Mengyuan Shen ([email protected]). For questions and comments, please contact mengyuan or submit an issue on github.

An overview of analysis pipeline to metagenome

1 Building work environment

1.1 The software need to install

  • bowtie2
  • diamond-v0.9.24
  • prodigal-2.6.3
  • samtools-1.4.1
  • megan6
  • kaiju

1.2 Database

## nr
axel ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz
axel ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz.md5
# https://github.com/bbuchfink/diamond
# diamond makedb --in nr.faa -d nr

## MEGAN6 database
axel http://ab.inf.uni-tuebingen.de/data/software/megan6/download/prot_acc2tax-Mar2018X1.abin.zip

## kaiju database
# Non-redundant protein database nr
makeDB.sh -n 

2 Co-assembly

megahit=~/biosoft/megahit_v1.1.1_LINUX_CPUONLY_x86_64-bin/megahit
$megahit -1 DC_R1.fq.gz,DC-1_R1.fq.gz \
		 -2 DC_R2.fq.gz,DC-1_R2.fq.gz \
         --presets meta-large -o DC_MEGAHIT_two_years -t 15 --out-prefix DCL --min-contig-len 500 \
         --continue

3 CDS finding

# $ ~/biosoft/prodigal.linux -v
# Prodigal V2.6.3: February, 2016
lake=DCL
name=D
prodigal=~/biosoft/prodigal.linux
anvi_script_reformat_fasta=~/anaconda3/envs/anvio_5.2.0/bin/anvi-script-reformat-fasta
contig=~/WORK/Yun_Gui_Lake/assembly/${lake}_MEGAHIT_two_years/${lake}.contigs.fa
$anvi_script_reformat_fasta $contig -o ${name}_contig.fa --simplify-names --prefix ${name}
$prodigal -a ${name}_gene.faa -d ${name}_gene.fna -f gff -o ${name}_gene.gff -p meta -i ${name}_contig.fa

4 CDS abundance

  • mapping
## Software
bowtie2_build=~/biosoft/bowtie2-2.3.4.1-linux-x86_64/bowtie2-build
bowtie2=~/biosoft/bowtie2-2.3.4.1-linux-x86_64/bowtie2
samtools=~/anaconda3/envs/anvio_5.2.0/bin/samtools
NUM_THREADS=25
## Data
name=D
contig=~/WORK/Yun_Gui_Lake/co_gene_count_20190401/${name}_contig.fa
data1=~/WORK/Yun_Gui_Lake/Yun_Gui_Lake_2017/Clean_Data
data2=~/WORK/Yun_Gui_Lake/Yun_Gui_Lake_2018/Data
R1_1=$data1/DCL-1_R1.fq.gz
R1_2=$data1/DCL-1_R2.fq.gz
R2_1=$data2/DCL-2_R1.fq.gz
R2_2=$data2/DCL-2_R2.fq.gz

# Run
#$bowtie2_build $contig $contig
$bowtie2 --threads $NUM_THREADS -x $contig -1 $R1_1 -2 $R1_2 | $samtools view -@ 25 -Sb - |$samtools sort -@ 25 - >${name}_17_s.bam
$samtools index ${name}_17_s.bam

java -Xms500g -Xmx500g -XX:ParallelGCThreads=25 \
-XX:MaxPermSize=500g -XX:+CMSClassUnloadingEnabled \
-jar ~/biosoft/picard.jar MarkDuplicates \
INPUT=${name}_17_s.bam \
OUTPUT=${name}_17_smd.bam \
METRICS_FILE=${name}_17-smd.metrics \
AS=TRUE \
VALIDATION_STRINGENCY=LENIENT \
MAX_FILE_HANDLES_FOR_READ_ENDS_MAP=1000 \
REMOVE_DUPLICATES=TRUE
  • count
name=D
~/biosoft/subread-1.6.4-Linux-x86_64/bin/featureCounts -T 25 -F gff -p -t CDS -g ID -a ${name}_gene.gff -o  ${name}_gene_counts_name.txt ${name}*.bam
Rscript TPM_RPKM.R ${name}_gene_counts_name.txt
  • NR annotion
diamond=~/biosoft/Diamond/diamond
nr=~/DATAbase/NR/nr
blast2lca=~/biosoft/MEGAN_6_15_1/megan/tools/blast2lca
NUM_THREADS=50
$diamond blastp -p $NUM_THREADS -d $nr -o ${name}_gene_nr.daa -q ${name}_gene.faa -f 100 -e 0.00001 --sensitive --top 3

5 Taxonomic Analysis

nodes=~/biosoft/kaiju/bin/kaijudb/nodes.dmp
names=~/biosoft/kaiju/bin/kaijudb/names.dmp
kaiju_db=~/biosoft/kaiju/bin/kaijudb/kaiju_db_nr.fmi
data1=~/Ten_lake_new/Clean_Data

do
kaiju -t $nodes -f $kaiju_db -i $data1/DCL-1_R1.fq.gz -j $data1/DCL-2_R2.fq.gz -o
DCL-1_nr_kaiju.out -z 25 -E 0.05
kaiju2krona -t $nodes -n $names -i DCL-1_nr_kaiju.out -o DCL-1_nr_kaiju2krona.out
for j in phylum class order
do(kaijuReport -t $nodes -n $names -i DCL-1_nr_kaiju.out -r ${j} -o
DCL-1_nr_${j}_kaiju.out.summary -u -p)
done

6 Functional Analysis

seqkit split2 -p 6 D_gene.faa
# Upload the split file to https://www.kegg.jp/ghostkoala/

7 Figures scripts

8 Citation

If you use this analysis pipeline, please cite:

Shen M, Li Q, Ren M, Lin Y, Wang J, Chen L, Li T and Zhao J. (2019) Trophic Status is Associated with Community Structure and Metabolic Potential of Planktonic Microbiota in Plateau Lakes. Front.Microbiol. 10:2560. doi:10.3389/fmicb.2019.02560

About

An overview of analysis pipeline to metagenome of each lake samples at different trophic levels, including the steps of sampling, DNA Extraction, sequencing, assembly, CDS finding, CDS abundance calculating, taxonomy, functional assignment and statistical analysis

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 100.0%