Skip to content

Commit

Permalink
Add simple API server
Browse files Browse the repository at this point in the history
  • Loading branch information
VikParuchuri committed Oct 30, 2024
1 parent a81ebad commit a424047
Show file tree
Hide file tree
Showing 5 changed files with 640 additions and 363 deletions.
21 changes: 20 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ There's a hosted API for marker available [here](https://www.datalab.to/):

- Supports PDFs, word documents, and powerpoints
- 1/4th the price of leading cloud-based competitors
- Leverages [Modal](https://modal.com/) for high reliability without latency spikes
- High uptime (99.99%), quality, and speed (.25s/page for 50 page doc)

# Community

Expand Down Expand Up @@ -191,6 +191,25 @@ The output will be a markdown file, but there will also be a metadata json file
}
```

## API server

There is a very simple API server you can run like this:

```shell
pip install -U uvicorn fastapi python-multipart
marker_server --port 8001
```

This will start a fastapi server that you can access at `localhost:8001`. You can go to `localhost:8001/docs` to see the endpoint options.

Note that this is not a very robust API, and is only intended for small-scale use. If you want to use this server, but want a more robust conversion option, you can run against the hosted [Datalab API](https://www.datalab.to/plans). You'll need to register and get an API key, then run:

```shell
marker_server --port 8001 --api_key API_KEY
```

Note: This is not the recommended way to use the API, it's only provided as a convenience for people wrapping the marker repo.

# Troubleshooting

There are some settings that you may find useful if things aren't working the way you expect:
Expand Down
170 changes: 170 additions & 0 deletions marker_server.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,170 @@
import argparse
import asyncio
import os

import requests
import uvicorn
from starlette.responses import HTMLResponse

os.environ["PDFTEXT_CPU_WORKERS"] = "1"

import base64
from contextlib import asynccontextmanager
from typing import Optional
import io

from fastapi import FastAPI, Form
from marker.convert import convert_single_pdf
from marker.models import load_all_models

app_data = {}

DATALAB_URL = "https://api.datalab.to/api/v1/marker"


@asynccontextmanager
async def lifespan(app: FastAPI):
if app.state.LOCAL:
app_data["models"] = load_all_models()

yield

if "models" in app_data:
del app_data["models"]


app = FastAPI(lifespan=lifespan)

@app.get("/")
async def root():
return HTMLResponse(
"""
<h1>Marker API</h1>
<ul>
<li><a href="/docs">API Documentation</a></li>
<li><a href="/local">Run marker locally (post request only)</a></li>
<li><a href="/remote">Run marker remotely (post request only)</a></li>
</ul>
"""
)


@app.post("/remote")
async def convert_pdf_remote(
filepath: str = Form(
...,
description="The path to the PDF file, word document, or powerpoint to convert."
),
max_pages: Optional[int] = Form(
None,
description="The maximum number of pages in the PDF to convert."
),
langs: Optional[str] = Form(
None,
description="The optional languages to use if OCR is needed, comma separated. Must be either the names or codes from https://github.com/VikParuchuri/surya/blob/master/surya/languages.py."
),
force_ocr: bool = Form(
False,
description="Force OCR on all pages of the PDF. Defaults to False. This can lead to worse results if you have good text in your PDFs (which is true in most cases)."
),
paginate: bool = Form(False,
description="Whether to paginate the output. Defaults to False. If set to True, each page of the output will be separated by a horizontal rule that contains the page number (2 newlines, {PAGE_NUMBER}, 48 - characters, 2 newlines)."),
extract_images: bool = Form(True, description="Whether to extract images from the PDF. Defaults to True. If set to False, no images will be extracted from the PDF."),
):
with open(filepath, "rb") as f:
filedata = f.read()

filename = os.path.basename(filepath)
form_data = {
'file': (filename, filedata, 'application/pdf'),
'max_pages': (None, max_pages),
'langs': (None, langs),
'force_ocr': (None, force_ocr),
'paginate': (None, paginate),
'extract_images': (None, extract_images),
}

headers = {"X-API-Key": app.state.API_KEY}

response = requests.post(DATALAB_URL, files=form_data, headers=headers)
data = response.json()

max_polls = 300
check_url = data["request_check_url"]

for i in range(max_polls):
await asyncio.sleep(2)
response = requests.get(check_url, headers=headers)
data = response.json()

if data["status"] == "complete":
break

return data


@app.post("/local")
async def convert_pdf_local(
filepath: str,
max_pages: Optional[int] = Form(
None,
description="The maximum number of pages in the PDF to convert."
),
langs: Optional[str] = Form(
None,
description="The optional languages to use if OCR is needed, comma separated. Must be either the names or codes from https://github.com/VikParuchuri/surya/blob/master/surya/languages.py."
),
force_ocr: bool = Form(
False,
description="Force OCR on all pages of the PDF. Defaults to False. This can lead to worse results if you have good text in your PDFs (which is true in most cases)."
)
):
try:
full_text, images, metadata = convert_single_pdf(
filepath,
app_data["models"],
max_pages=max_pages,
langs=langs,
ocr_all_pages=force_ocr
)
except Exception as e:
return {
"success": False,
"error": str(e),
}

encoded = {}
for k, v in images.items():
byte_stream = io.BytesIO()
v.save(byte_stream, format="PNG")
encoded[k] = base64.b64encode(byte_stream.getvalue()).decode("utf-8")

return {
"markdown": full_text,
"images": encoded,
"metadata": metadata,
"success": True
}


def main():
parser = argparse.ArgumentParser(description='Convert PDFs to markdown.')
parser.add_argument('--port', type=int, default=8000, help='Port to run the server on')
parser.add_argument('--host', type=str, default="127.0.0.1", help='Host to run the server on')
parser.add_argument('--api_key', type=str, default=None, help='API key for the Datalab API. If not specified, API will run locally.')

args = parser.parse_args()

app.state.API_KEY = args.api_key
app.state.LOCAL = args.api_key is None

# Run the server
uvicorn.run(
app,
host=args.host,
port=args.port,
)


if __name__ == "__main__":
main()
Loading

0 comments on commit a424047

Please sign in to comment.