/opt/dpg/pipeline.py --input /datasets/images/jim.zip --output /datasets/output --sfm-type incremental --geomodel f --run-openmvg --run-openmvs --output-obj
Photogrammetry pipeline using OpenMVG and OpenMVS.
(Also includes CMVS and COLMAP).
Windows:
- Install Windows Subsystem for Linux (Ubuntu 16.04)
- Clone repository
sudo ./build.sh
Linux (Ubuntu 16.04):
- Clone repository
sudo ./build.sh
Docker:
- Clone repository
docker build -t dpg .
docker run -v $(pwd):/datasets --rm -it dpg
- Download example image set, open it up in terminal and run the docker image (see above)
- Run pipeline:
/opt/dpg/pipeline.py --input /datasets/images --output /datasets/output --sfm-type incremental --geomodel f --run-openmvg --run-openmvs
- Open your model for example using meshlab. The model is named "scene_mesh_refine_texture.ply" and it's under $datasets/ImageDataset_SceauxCastle/sfm/mvs directory
You should end up with something like this (press ctrl/cmd-k to disable backface culling)
- Download example image set, open it up in terminal and run the docker image (see above)
- Run pipeline:
/opt/dpg/pipeline.py --input /datasets/images --output /datasets/output_dense --sfm-type incremental --geomodel f --run-openmvg --run-openmvs --densify
The end result should look something like this
General Options:
--help
Print this text
--debug
Print commands and exit
--input [directory]
Image input directory
--output [directory]
Output directory
--sfm-type [string]
Select SfM mode from Global SfM or Incremental SfM. Possible values:
incremental
global
--run-openmvg
Run OpenMVG SfM pipeline
--run-openmvs
Run OpenMVS MVS pipeline
Optional settings:
--recompute
Recompute everything
--openmvg [path]
Set OpenMVG install location
--openmvs [path]
Set OpenMVS install location
OpenMVG
Image Listing:
--cgroup
Each view have it's own camera intrinsic parameters
--flength [float]
If your camera is not listed in the camera sensor database, you can set pixel focal length here.
The value can be calculated by max(width-pixels, height-pixels) * focal length(mm) / Sensor width
--cmodel [int]
Camera model:
1: Pinhole
2: Pinhole Radial 1
3: Pinhole Radial 3 (default)
4: Pinhole brown
5: Pinhole with a simple Fish-eye distortion
Compute Features:
--descmethod [string]
Method to describe an image:
SIFT (default)
AKAZE_FLOAT
AKAZE_MLDB
--dpreset [string]
Used to control the Image_describer configuration
NORMAL
HIGH
ULTRA
Compute Matches:
--ratio [float]
Nearest Neighbor distance ratio (smaller is more restrictive => Less false positives)
Default: 0.8
--geomodel [char]
Compute Matches geometric model:
f: Fundamental matrix filtering (default)
For Incremental SfM
e: Essential matrix filtering
For Global SfM
h: Homography matrix filtering
For datasets that have same point of projection
--matching [string]
Compute Matches Nearest Matching Method:
BRUTEFORCEL2: BruteForce L2 matching for Scalar based regions descriptor,
ANNL2: Approximate Nearest Neighbor L2 matching for Scalar based regions descriptor,
CASCADEHASHINGL2: L2 Cascade Hashing matching,
FASTCASCADEHASHINGL2: (default)
* L2 Cascade Hashing with precomputed hashed regions, (faster than CASCADEHASHINGL2 but use more memory).
Incremental SfM:
--icmodel [int]
The camera model type that will be used for views with unknown intrinsic
1: Pinhole
2: Pinhole radial 1
3: Pinhole radial 3 (default)
4: Pinhole radial 3 + tangential 2
5: Pinhole fisheye
Global SfM:
--grotavg [int]
1: L1 rotation averaging [Chatterjee]
2: L2 rotation averaging [Martinec] (default)
--gtransavg [int]
1: L1 translation averaging [GlobalACSfM]
2: L2 translation averaging [Kyle2014]
3: SoftL1 minimization [GlobalACSfM] (default)
OpenMVS
--output-obj
Make OpenMVS output obj instead of ply (default)
DensifyPointCloud:
--densify
Enable dense reconstruction
Default: Off
--densify-only
Only densify (duh)
--dnumviews [int]
Number of views used for depth-map estimation
0 all neighbor views available
Default: 4
--dnumviewsfuse [int]
Minimum number of images that agrees with an estimate during fusion in order to consider it
inliner
Default: 3
--dreslevel [int]
How many times to scale down the images before point cloud computation. For better accuracy/speed width
high resolution images use 2 or even 3
Default: 1
ReconstructMesh:
--rcthickness [int]
ReconstructMesh Thickness Factor
Default: 2
--rcdistance [int]
Minimum distance in pixels between the projection of two 3D points to consider them different while
triangulating (0 to disable). Use to reduce amount of memory used with a penalty of lost detail
Default: 2
RefineMesh:
--rmiterations [int]
Number of RefineMesh iterations
Default: 3
--rmlevel [int]
Times to scale down the images before mesh refinement
Default: 0
--rmcuda
Use CUDA version of RefineMesh binary (will fall back the executable is not found)
Texture Mesh:
--txemptycolor [int]
Color of surfaces OpenMVS TextureMesh is unable to texture.
Default: 0 (black)