We perform data augmentation for chart perception and reasoning by leveraging an LLMs-based self-inspection data production scheme, producing the SimChart9K dataset, where the simulated dataset consists of 9,536 chart images and associated data annotations in CSV format. Besides, we observe that StructChart continuously improves the chart perception performance as more simulated charts are used for pre-training.
Downloading the official SimChart9K dataset from google drive
a. Register an account from OpenXLab website as follows.
https://openxlab.org.cn/home
b. Install the dependent libraries as follows:
- Install the openxlab dependent libraries.
pip install openxlab
- Obtain the Access Key and Secret Key on the OpenXLab website by clicking the button of Account Security
- Login the OpenXLab using the Access Key and Secret Key
openxlab login
c. Download the SimChart9K dataset by performing the following command:
openxlab dataset get --dataset-repo Lonepic/SimChart9K
Please consider citing our work if this dataset is helpful for your research:
@article{xia2023structchart,
title={StructChart: Perception, Structuring, Reasoning for Visual Chart Understanding},
author={Xia, Renqiu and Zhang, Bo and Peng, Haoyang and Ye, Hancheng and Yan, Xiangchao and Ye, Peng and Shi, Botian and Yan, Junchi and Qiao, Yu},
journal={arXiv preprint arXiv:2309.11268},
year={2023}
}