TiderDB.jl is a 100% Julia implementation of the dbplyr R package, and similar to Python's ibis package.
The main goal of TidierDB.jl is to bring the syntax of Tidier.jl to multiple SQL backends, making it possible to analyze data directly on databases without needing to copy the entire database into memory.
DuckDB (default) | duckdb() |
ClickHouse | clickhouse() |
SQLite | sqlite() |
Postgres | postgres() |
MySQL | mysql() |
MariaDB | mysql() |
MSSQL | mssql() |
Athena | athena() |
Snowflake | snowflake() |
Databricks | databricks() |
Google Big Query | gbq() |
Oracle | oracle() |
Change the backend using set_sql_mode()
- for example - set_sql_mode(databricks())
For the stable version:
] add TidierDB
TidierDB.jl currently supports the following top-level macros:
Category | Supported Macros and Functions |
---|---|
Data Manipulation | @arrange , @group_by , @filter , @select , @mutate (supports across ), @summarize /@summarise (supports across ), @distinct |
Joining | @left_join , @right_join , @inner_join , @anti_join , @full_join , @semi_join , @union |
Slice and Order | @slice_min , @slice_max , @slice_sample , @order , @window_order , @window_frame |
Utility | @show_query , @collect , @head , @count , show_tables , @create_view , drop_view |
Helper Functions | across , desc , if_else , case_when , n , starts_with , ends_with , contains , as_float , as_integer , as_string , is_missing , missing_if , replace_missing |
TidierStrings.jl Functions | str_detect , str_replace , str_replace_all , str_remove_all , str_remove |
TidierDates.jl Functions | year , month , day , hour , min , second , floor_date , difftime , mdy , ymd , dmy |
Aggregate Functions | mean , minimum , maximum , std , sum , cumsum , cor , cov , var , all aggregate sql fxns |
@summarize
supports any SQL aggregate function in addition to the list above. Simply write the function as written in SQL syntax and it will work.
@mutate
supports all builtin SQL functions as well.
When using the DuckDB backend, if db_table
recieves a file path (.parquet
, .json
, .csv
, iceberg
or delta
), it does not copy it into memory. This allows for queries on files too big for memory. db_table
also supports S3 bucket locations via DuckDB.
Typically, you will want to use TidierDB alongside TidierData because there are certain functionality (such as pivoting) which are only supported in TidierData and can only be performed on data frames.
Our recommended path for using TidierDB is to import the package so that there are no namespace conflicts with TidierData. Once TidierDB is integrated with Tidier, then Tidier will automatically load the packages in this fashion.
First, let's develop and execute a query using TidierDB. Notice that all top-level macros and functions originating from TidierDB start with a DB
prefix. Any functions defined within macros do not need to be prefixed within DB
because they are actually pseudofunctions that are in actuality converted into SQL code.
Even though the code reads similarly to TidierData, note that no computational work actually occurs until you run DB.@collect()
, which runs the SQL query and instantiates the result as a DataFrame.
using TidierData
import TidierDB as DB
db = DB.connect(DB.duckdb());
path_or_name = "https://gist.githubusercontent.com/seankross/a412dfbd88b3db70b74b/raw/5f23f993cd87c283ce766e7ac6b329ee7cc2e1d1/mtcars.csv"
mtcars = DB.db_table(db, path_or_name);
@chain DB.t(mtcars) begin
DB.@filter(!starts_with(model, "M"))
DB.@group_by(cyl)
DB.@summarize(mpg = mean(mpg))
DB.@mutate(mpg_squared = mpg^2,
mpg_rounded = round(mpg),
mpg_efficiency = case_when(
mpg >= cyl^2 , "efficient",
mpg < 15.2 , "inefficient",
"moderate"))
DB.@filter(mpg_efficiency in ("moderate", "efficient"))
DB.@arrange(desc(mpg_rounded))
DB.@collect
end
2×5 DataFrame
Row │ cyl mpg mpg_squared mpg_rounded mpg_efficiency
│ Int64? Float64? Float64? Float64? String?
─────┼────────────────────────────────────────────────────────────
1 │ 4 27.3444 747.719 27.0 efficient
2 │ 6 19.7333 389.404 20.0 moderate
We cannot do this using TidierDB. However, we can call @pivot_longer()
from TidierData after the result of the query has been instantiated as a DataFrame, like this:
@chain DB.t(mtcars) begin
DB.@filter(!starts_with(model, "M"))
DB.@group_by(cyl)
DB.@summarize(mpg = mean(mpg))
DB.@mutate(mpg_squared = mpg^2,
mpg_rounded = round(mpg),
mpg_efficiency = case_when(
mpg >= cyl^2 , "efficient",
mpg < 15.2 , "inefficient",
"moderate"))
DB.@filter(mpg_efficiency in ("moderate", "efficient"))
DB.@arrange(desc(mpg_rounded))
DB.@collect
@pivot_longer(everything(), names_to = "variable", values_to = "value")
end
10×2 DataFrame
Row │ variable value
│ String Any
─────┼───────────────────────────
1 │ cyl 4
2 │ cyl 6
3 │ mpg 27.3444
4 │ mpg 19.7333
5 │ mpg_squared 747.719
6 │ mpg_squared 389.404
7 │ mpg_rounded 27.0
8 │ mpg_rounded 20.0
9 │ mpg_efficiency efficient
10 │ mpg_efficiency moderate
We can replace DB.collect()
with DB.@show_query
to reveal the underlying SQL query being generated by TidierDB. To handle complex queries, TidierDB makes heavy use of Common Table Expressions (CTE), which are a useful tool to organize long queries.
@chain DB.t(mtcars) begin
DB.@filter(!starts_with(model, "M"))
DB.@group_by(cyl)
DB.@summarize(mpg = mean(mpg))
DB.@mutate(mpg_squared = mpg^2,
mpg_rounded = round(mpg),
mpg_efficiency = case_when(
mpg >= cyl^2 , "efficient",
mpg < 15.2 , "inefficient",
"moderate"))
DB.@filter(mpg_efficiency in ("moderate", "efficient"))
DB.@arrange(desc(mpg_rounded))
DB.@show_query
end
WITH cte_1 AS (
SELECT *
FROM mtcars
WHERE NOT (starts_with(model, 'M'))),
cte_2 AS (
SELECT cyl, AVG(mpg) AS mpg
FROM cte_1
GROUP BY cyl),
cte_3 AS (
SELECT cyl, mpg, POWER(mpg, 2) AS mpg_squared, ROUND(mpg) AS mpg_rounded, CASE WHEN mpg >= POWER(cyl, 2) THEN 'efficient' WHEN mpg < 15.2 THEN 'inefficient' ELSE 'moderate' END AS mpg_efficiency
FROM cte_2 ),
cte_4 AS (
SELECT *
FROM cte_3
WHERE mpg_efficiency in ('moderate', 'efficient'))
SELECT *
FROM cte_4
ORDER BY mpg_rounded DESC
TidierDB is already quite fully-featured, supporting advanced TidierData functions like across()
for multi-column selection.
@chain DB.t(mtcars) begin
DB.@group_by(cyl)
DB.@summarize(across((starts_with("a"), ends_with("s")), (mean, sum)))
DB.@collect
end
3×5 DataFrame
Row │ cyl am_mean vs_mean am_sum vs_sum
│ Int64? Float64? Float64? Int128? Int128?
─────┼──────────────────────────────────────────────
1 │ 4 0.727273 0.909091 8 10
2 │ 6 0.428571 0.571429 3 4
3 │ 8 0.142857 0.0 2 0
Bang bang !!
interpolation for columns and values is also supported.
There are a few subtle but important differences from Tidier.jl outlined here.
You can use any existing SQL function within @mutate
with the correct SQL syntax and it should just work.
But if you run into problems please open an issue, and we will be happy to take a look!