Skip to content

SigmaQuan/rnn-tutorial-gru-lstm

 
 

Repository files navigation

This repositoriy belongs to Part 4 of the WildML RNN Tutorial. The previous parts are here:

Jupyter Notebook Setup

System Requirements:

  • Python, pip
  • virtualenv (optional, but recommended)

To start the Jupyter Notebook:

# Clone the repo
git clone https://github.com/dennybritz/rnn-tutorial-lstm
cd rnn-tutorial-lstm

# Create a new virtual environment (optional, but recommended)
virtualenv venv
source venv/bin/activate

# Install requirements
pip install -r requirements.txt
# Start the notebook server
jupyter notebook

Setting up a CUDA-enabled GPU instance on EC2:

# Install build tools
sudo apt-get update
sudo apt-get install -y build-essential git python-pip libfreetype6-dev libxft-dev libncurses-dev libopenblas-dev  gfortran python-matplotlib libblas-dev liblapack-dev libatlas-base-dev python-dev python-pydot linux-headers-generic linux-image-extra-virtual
sudo pip install -U pip

# Install CUDA 7
wget http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1410/x86_64/cuda-repo-ubuntu1410_7.0-28_amd64.deb
sudo dpkg -i cuda-repo-ubuntu1410_7.0-28_amd64.deb
sudo apt-get update
sudo apt-get install -y cuda
sudo reboot

# Clone the repo and install requirements
git clone [email protected]:dennybritz/nn-theano.git
cd nn-theano
sudo pip install -r requirements.txt

# Set Environment variables
export CUDA_ROOT=/usr/local/cuda-7.0
export PATH=$PATH:$CUDA_ROOT/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CUDA_ROOT/lib64
export THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32
# For profiling only
export CUDA_LAUNCH_BLOCKING=1

# Startup jupyter noteboook
jupyter notebook

To start a public notebook server that is accessible over the network you can follow the official instructions.

About

Language Model GRU with Python and Theano

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 60.3%
  • Jupyter Notebook 33.2%
  • TeX 6.5%