A logical, reasonably standardized, but flexible project structure for doing and sharing data science work.
- Python 2.7 or 3.5
- Cookiecutter Python package >= 1.4.0: This can be installed with pip by or conda depending on how you manage your Python packages:
$ pip install cookiecutter
or
$ conda config --add channels conda-forge
$ conda install cookiecutter
cookiecutter https://github.com/drivendata/cookiecutter-data-science
The directory structure of your new project looks like this:
├── LICENSE
├── Makefile <- Makefile with commands like `make data` or `make train`
├── README.md <- The top-level README for developers using this project.
├── setup.py <- Allow the `src` directory to be pip installed and called
│ from the jupyter notebooks.
├── Snakefile <- Template Snakefile for using the project like a pipeline.
├── configs
│ ├── factory_resets
│ ├── logging.yaml
│ ├── main.yaml
│ └── README.txt
│
├── data
│ ├── external <- Data from third party sources.
│ ├── interim <- Intermediate data that has been transformed.
│ ├── processed <- The final, canonical data sets for modeling.
│ └── raw <- The original, immutable data dump.
│
├── docs <- A default Sphinx project; see sphinx-doc.org for details
│
├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
│ the creator's initials, and a short `-` delimited description, e.g.
│ `1.0-jqp-initial-data-exploration`.
│
├── github <- Allows `make github_remote` to create and push this project to github.
│ └── push_to_new_remote.sh
│
│
├── references
│
├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
│ └── figures <- Generated graphics and figures to be used in reporting
│
├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
│ generated with `pip freeze > requirements.txt`
│
├── src <- Source code for use in this project.
│ └── project_name <- Allow the `src` directory to be pip installed and called
│ │ from the jupyter notebooks via `from project_name.models import train_model`.
│ ├── __init__.py <- Makes project_name a Python module
│ ├── cli <- Defines the skeleton of a command line interface to `src`
│ │ ├── config.py
│ │ └── main.py
│ │
│ ├── errors.py
│ ├── features <- Scripts to turn raw data into features for modeling
│ │ └── build_features.py
│ │
│ ├── logging.py
│ ├── misc.py
│ ├── models <- Scripts to train models and then use trained models to make
│ │ │ predictions
│ │ ├── predict_model.py
│ │ └── train_model.py
│ │
│ ├── rules
│ │ └── template_python_script.py
│ │
│ ├── todos.txt
│ └── visualize <- Scripts to create exploratory and results oriented visualizations
│ └── visualize.py
│
├── test_environment.py
└── tox.ini
We welcome contributions! See the docs for guidelines.
pip install -r requirements.txt
py.test tests