Skip to content

Commit

Permalink
Merge pull request #250 from abhro/patch-1
Browse files Browse the repository at this point in the history
Minor documentation fixes
  • Loading branch information
ChrisRackauckas authored Jul 1, 2024
2 parents 0c2611f + ffa4683 commit 26f0f73
Show file tree
Hide file tree
Showing 5 changed files with 21 additions and 5 deletions.
2 changes: 1 addition & 1 deletion docs/src/basics/SampledIntegralProblem.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ method = TrapezoidalRule()
solve(problem, method)
```

The exact answer is of course \$ 1/3 \$.
The exact answer is of course ``1/3``.

## Details

Expand Down
2 changes: 1 addition & 1 deletion docs/src/tutorials/numerical_integrals.md
Original file line number Diff line number Diff line change
Expand Up @@ -125,7 +125,7 @@ For example, we can create our own sine function by integrating the cosine funct
using Integrals
my_sin(x) = solve(IntegralProblem((x, p) -> cos(x), (0.0, x)), QuadGKJL()).u
x = 0:0.1:(2 * pi)
@. my_sin(x) ≈ sin(x)
all(@. my_sin(x) ≈ sin(x))
```

## Infinity handling
Expand Down
8 changes: 7 additions & 1 deletion src/algorithms.jl
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@ allocate the buffer as this is handled automatically.
## References
```tex
@article{laurie1997calculation,
title={Calculation of Gauss-Kronrod quadrature rules},
author={Laurie, Dirk},
Expand All @@ -21,6 +22,7 @@ number={219},
pages={1133--1145},
year={1997}
}
```
"""
struct QuadGKJL{F, B} <: SciMLBase.AbstractIntegralAlgorithm
order::Int
Expand All @@ -44,6 +46,7 @@ you do not allocate the buffer as this is handled automatically.
## References
```tex
@article{genz1980remarks,
title={Remarks on algorithm 006: An adaptive algorithm for numerical integration over an N-dimensional rectangular region},
author={Genz, Alan C and Malik, Aftab Ahmad},
Expand All @@ -54,6 +57,7 @@ pages={295--302},
year={1980},
publisher={Elsevier}
}
```
"""
struct HCubatureJL{F, B} <: SciMLBase.AbstractIntegralAlgorithm
initdiv::Int
Expand Down Expand Up @@ -81,6 +85,7 @@ This algorithm can only integrate `Float64`-valued functions
## References
```tex
@article{lepage1978new,
title={A new algorithm for adaptive multidimensional integration},
author={Lepage, G Peter},
Expand All @@ -91,6 +96,7 @@ pages={192--203},
year={1978},
publisher={Elsevier}
}
```
"""
struct VEGAS{S} <: SciMLBase.AbstractIntegralAlgorithm
nbins::Int
Expand Down Expand Up @@ -143,7 +149,7 @@ function GaussLegendre(; n = 250, subintervals = 1, nodes = nothing, weights = n
end

"""
QuadratureRule(q; n=250)
QuadratureRule(q; n=250)
Algorithm to construct and evaluate a quadrature rule `q` of `n` points computed from the
inputs as `x, w = q(n)`. It assumes the nodes and weights are for the standard interval
Expand Down
10 changes: 10 additions & 0 deletions src/algorithms_extension.jl
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@ Importance sampling is used to reduce variance.
## References
```tex
@article{lepage1978new,
title={A new algorithm for adaptive multidimensional integration},
author={Lepage, G Peter},
Expand All @@ -23,6 +24,7 @@ pages={192--203},
year={1978},
publisher={Elsevier}
}
```
"""
struct CubaVegas <: AbstractCubaAlgorithm
flags::Int
Expand All @@ -42,6 +44,7 @@ Importance sampling and subdivision are thus used to reduce variance.
## References
```tex
@article{hahn2005cuba,
title={Cuba—a library for multidimensional numerical integration},
author={Hahn, Thomas},
Expand All @@ -52,6 +55,7 @@ pages={78--95},
year={2005},
publisher={Elsevier}
}
```
"""
struct CubaSUAVE{R} <: AbstractCubaAlgorithm where {R <: Real}
flags::Int
Expand All @@ -70,6 +74,7 @@ Stratified sampling is used to reduce variance.
## References
```tex
@article{friedman1981nested,
title={A nested partitioning procedure for numerical multiple integration},
author={Friedman, Jerome H and Wright, Margaret H},
Expand All @@ -80,6 +85,7 @@ pages={76--92},
year={1981},
publisher={ACM New York, NY, USA}
}
```
"""
struct CubaDivonne{R1, R2, R3, R4} <:
AbstractCubaAlgorithm where {R1 <: Real, R2 <: Real, R3 <: Real, R4 <: Real}
Expand All @@ -105,6 +111,7 @@ Multidimensional h-adaptive integration from Cuba.jl.
## References
```tex
@article{berntsen1991adaptive,
title={An adaptive algorithm for the approximate calculation of multiple integrals},
author={Berntsen, Jarle and Espelid, Terje O and Genz, Alan},
Expand All @@ -115,6 +122,7 @@ pages={437--451},
year={1991},
publisher={ACM New York, NY, USA}
}
```
"""
struct CubaCuhre <: AbstractCubaAlgorithm
flags::Int
Expand Down Expand Up @@ -165,6 +173,7 @@ Defaults to `Cubature.INDIVIDUAL`, other options are
## References
```tex
@article{genz1980remarks,
title={Remarks on algorithm 006: An adaptive algorithm for numerical integration over an N-dimensional rectangular region},
author={Genz, Alan C and Malik, Aftab Ahmad},
Expand All @@ -175,6 +184,7 @@ pages={295--302},
year={1980},
publisher={Elsevier}
}
```
"""
struct CubatureJLh <: AbstractCubatureJLAlgorithm
error_norm::Int32
Expand Down
4 changes: 2 additions & 2 deletions src/algorithms_sampled.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ Struct for evaluating an integral via the trapezoidal rule.
Example with sampled data:
```
```julia
using Integrals
f = x -> x^2
x = range(0, 1, length=20)
Expand All @@ -28,7 +28,7 @@ Simpson's composite 1/3 rule for non-equidistant grids.
Example with equidistant data:
```
```julia
using Integrals
f = x -> x^2
x = range(0, 1, length=20)
Expand Down

0 comments on commit 26f0f73

Please sign in to comment.