-
-
Notifications
You must be signed in to change notification settings - Fork 82
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
13 changed files
with
7,721 additions
and
7,721 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,72 +1,72 @@ | ||
# Activation functions | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
|
||
# SiLU https://arxiv.org/pdf/1606.08415.pdf ---------------------------------------------------------------------------- | ||
class SiLU(nn.Module): # export-friendly version of nn.SiLU() | ||
@staticmethod | ||
def forward(x): | ||
return x * torch.sigmoid(x) | ||
|
||
|
||
class Hardswish(nn.Module): # export-friendly version of nn.Hardswish() | ||
@staticmethod | ||
def forward(x): | ||
# return x * F.hardsigmoid(x) # for torchscript and CoreML | ||
return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX | ||
|
||
|
||
class MemoryEfficientSwish(nn.Module): | ||
class F(torch.autograd.Function): | ||
@staticmethod | ||
def forward(ctx, x): | ||
ctx.save_for_backward(x) | ||
return x * torch.sigmoid(x) | ||
|
||
@staticmethod | ||
def backward(ctx, grad_output): | ||
x = ctx.saved_tensors[0] | ||
sx = torch.sigmoid(x) | ||
return grad_output * (sx * (1 + x * (1 - sx))) | ||
|
||
def forward(self, x): | ||
return self.F.apply(x) | ||
|
||
|
||
# Mish https://github.com/digantamisra98/Mish -------------------------------------------------------------------------- | ||
class Mish(nn.Module): | ||
@staticmethod | ||
def forward(x): | ||
return x * F.softplus(x).tanh() | ||
|
||
|
||
class MemoryEfficientMish(nn.Module): | ||
class F(torch.autograd.Function): | ||
@staticmethod | ||
def forward(ctx, x): | ||
ctx.save_for_backward(x) | ||
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x))) | ||
|
||
@staticmethod | ||
def backward(ctx, grad_output): | ||
x = ctx.saved_tensors[0] | ||
sx = torch.sigmoid(x) | ||
fx = F.softplus(x).tanh() | ||
return grad_output * (fx + x * sx * (1 - fx * fx)) | ||
|
||
def forward(self, x): | ||
return self.F.apply(x) | ||
|
||
|
||
# FReLU https://arxiv.org/abs/2007.11824 ------------------------------------------------------------------------------- | ||
class FReLU(nn.Module): | ||
def __init__(self, c1, k=3): # ch_in, kernel | ||
super().__init__() | ||
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False) | ||
self.bn = nn.BatchNorm2d(c1) | ||
|
||
def forward(self, x): | ||
return torch.max(x, self.bn(self.conv(x))) | ||
# Activation functions | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
|
||
# SiLU https://arxiv.org/pdf/1606.08415.pdf ---------------------------------------------------------------------------- | ||
class SiLU(nn.Module): # export-friendly version of nn.SiLU() | ||
@staticmethod | ||
def forward(x): | ||
return x * torch.sigmoid(x) | ||
|
||
|
||
class Hardswish(nn.Module): # export-friendly version of nn.Hardswish() | ||
@staticmethod | ||
def forward(x): | ||
# return x * F.hardsigmoid(x) # for torchscript and CoreML | ||
return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX | ||
|
||
|
||
class MemoryEfficientSwish(nn.Module): | ||
class F(torch.autograd.Function): | ||
@staticmethod | ||
def forward(ctx, x): | ||
ctx.save_for_backward(x) | ||
return x * torch.sigmoid(x) | ||
|
||
@staticmethod | ||
def backward(ctx, grad_output): | ||
x = ctx.saved_tensors[0] | ||
sx = torch.sigmoid(x) | ||
return grad_output * (sx * (1 + x * (1 - sx))) | ||
|
||
def forward(self, x): | ||
return self.F.apply(x) | ||
|
||
|
||
# Mish https://github.com/digantamisra98/Mish -------------------------------------------------------------------------- | ||
class Mish(nn.Module): | ||
@staticmethod | ||
def forward(x): | ||
return x * F.softplus(x).tanh() | ||
|
||
|
||
class MemoryEfficientMish(nn.Module): | ||
class F(torch.autograd.Function): | ||
@staticmethod | ||
def forward(ctx, x): | ||
ctx.save_for_backward(x) | ||
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x))) | ||
|
||
@staticmethod | ||
def backward(ctx, grad_output): | ||
x = ctx.saved_tensors[0] | ||
sx = torch.sigmoid(x) | ||
fx = F.softplus(x).tanh() | ||
return grad_output * (fx + x * sx * (1 - fx * fx)) | ||
|
||
def forward(self, x): | ||
return self.F.apply(x) | ||
|
||
|
||
# FReLU https://arxiv.org/abs/2007.11824 ------------------------------------------------------------------------------- | ||
class FReLU(nn.Module): | ||
def __init__(self, c1, k=3): # ch_in, kernel | ||
super().__init__() | ||
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False) | ||
self.bn = nn.BatchNorm2d(c1) | ||
|
||
def forward(self, x): | ||
return torch.max(x, self.bn(self.conv(x))) |
Oops, something went wrong.