Skip to content

QgZhan/ESVAE

Repository files navigation

ESVAE: An Efficient Spiking Variational Autoencoder with Reparameterizable Poisson Spiking Sampling

official implementation of Efficient Spiking Variational Autoencoder.

arxiv: https://arxiv.org/abs/2310.14839

overview

Get started

  1. install dependencies
pip install -r requirements.txt
  1. initialize the fid stats
python init_fid_stats.py

Demo

The following command calculates the Inception score & FID of ESVAE trained on CelebA. After that, it outputs demo_input_esvae.png, demo_recons_esvae.png, and demo_sample_esvae.png.

python demo_esvae.py

Training Efficient Spiking Variational Autoencoder

python main_esvae exp_name -config NetworkConfigs/esvae/dataset_name.yaml

Training settings are defined in NetworkConfigs/esvae/*.yaml.

args:

  • name: [required] experiment name
  • config: [required] config file path
  • checkpoint: checkpoint path (if use pretrained model)
  • device: device id of gpu, default 0

You can watch the logs with below command and access http://localhost:8009/

tensorboard --logdir checkpoint --bind_all --port 8009

Training ANN VAE

As a comparison method, we prepared vanilla VAEs of the same network architecture built with ANN, and trained on the same settings.

python main_ann_vae exp_name -dataset dataset_name

args:

  • name: [required] experiment name
  • dataset:[required] dataset name [mnist, fashion, celeba, cifar10]
  • batch_size: default 250
  • latent_dim: default 128
  • checkpoint: checkpoint path (if use pretrained model)
  • device: device id of gpu, default 0

Evaluation

results

Reconstructed Images

cifar_recons celeb_recons

Generated Images

cifar celeb

Noised Images

cifar_noise celeb_noise

About

An efficient spiking variational autoencoder

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages