This repository is the official implementation of CVPR2024 Paper "Poly Kernel Inception Network for Remote Sensing Detection".
Imagenet 300-epoch pretrained PKINet-T backbone: Download
Imagenet 300-epoch pretrained PKINet-S backbone: Download
DOTAv1.0
Model | mAP | Angle | Aug | Configs | Download |
---|---|---|---|---|---|
PKINet-T (1024,1024,200) | 77.87 | le90 | - | pkinet-t_fpn_o-rcnn_dotav1-ss_le90 | model |
PKINet-S (1024,1024,200) | 78.39 | le90 | - | pkinet-s_fpn_o-rcnn_dotav1-ss_le90 | model |
DOTAv1.5
Model | mAP | Angle | Aug | Configs | Download |
---|---|---|---|---|---|
PKINet-S (1024,1024,200) | 71.47 | le90 | - | pkinet-s_fpn_o-rcnn_dotav15-ss_le90 | model |
MMRotate-PKINet depends on PyTorch, MMCV and MMDetection. Below are quick steps for installation. Please refer to Install Guide for more detailed instruction.
conda create --name openmmlab python=3.8 -y
conda activate openmmlab
conda install pytorch==1.11.0 torchvision==0.12.0 cudatoolkit=11.3 -c pytorch
pip install yapf==0.40.1
pip install -U openmim
mim install mmcv-full
mim install mmdet
mim install mmengine
git clone
cd PKINet
mim install -v -e .
Please see get_started.md for the basic usage of MMRotate. We provide colab tutorial, and other tutorials for:
This project is released under the Apache 2.0 license.
@InProceedings{Cai_2024_Poly,
author = {Cai, Xinhao and Lai, Qiuxia and Wang, Yuwei and Wang, Wenguan and Sun, Zeren and Yao, Yazhou},
title = {Poly Kernel Inception Network for Remote Sensing Detection},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2024},
pages = {27706-27716}
}