Skip to content

PyTorch implementation of some single image dehazing networks.

License

Notifications You must be signed in to change notification settings

Mr-Y-B-L/PyTorch-Image-Dehazing

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyTorch-Image-Dehazing

PyTorch implementation of some single image dehazing networks.

Currently Implemented: AOD-Net: An extremely lightweight model (< 10 KB). Results are good.

Prerequisites:

  1. Python 3
  2. Pytorch 0.4

Preparation:

  1. Create folder "data".
  2. Download and extract the dataset into "data" from the original author's project page. (https://sites.google.com/site/boyilics/website-builder/project-page).

Training:

  1. Run train.py. The script will automatically dump some validation results into the "samples" folder after every epoch. The model snapshots are dumped in the "snapshots" folder.

Testing:

  1. Run dehaze.py. The script takes images in the "test_images" folder and dumps the dehazed images into the "results" folder. A pre-trained snapshot has been provided in the snapshots folder.

Evaluation: WIP.
Some qualitative results are shown below:

Alt text
Alt text
Alt text
Alt text
Alt text
Alt text

About

PyTorch implementation of some single image dehazing networks.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%