Skip to content

Commit

Permalink
Merge pull request #1069 from yael-prilutski/feature/raw2bin
Browse files Browse the repository at this point in the history
Added support for Thorlabs RAW files (io.raw)
  • Loading branch information
chriski777 authored Dec 16, 2023
2 parents 1a2763f + b042a22 commit 193e7f1
Show file tree
Hide file tree
Showing 6 changed files with 318 additions and 17 deletions.
8 changes: 4 additions & 4 deletions docs/inputs.rst
Original file line number Diff line number Diff line change
Expand Up @@ -129,10 +129,10 @@ you're using this and having trouble because it's not straightforward.
Thorlabs raw files
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Christoph Schmidt-Hieber (@neurodroid) has written `haussmeister`_ which
can load and convert ThorLabs \*.raw files to suite2p binary files!
suite2p will automatically use this if you have pip installed it
(``pip install haussmeister``).
Suite2p has been upgraded with internal support for Thorlabs raw files (Yael Prilutski).
Specify "raw" for "input_format".
Designed to work with one or several planes and/or channels.


.. _hdf5-files-and-sbx:

Expand Down
3 changes: 2 additions & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,8 @@
"nd2",
"sbxreader",
"h5py",
"opencv-python-headless"
"opencv-python-headless",
"xmltodict"
]

nwb_deps = [
Expand Down
2 changes: 1 addition & 1 deletion suite2p/gui/rungui.py
Original file line number Diff line number Diff line change
Expand Up @@ -276,7 +276,7 @@ def create_buttons(self):
self.inputformat = QComboBox()
[
self.inputformat.addItem(f)
for f in ["tif", "binary", "bruker", "sbx", "h5", "movie", "nd2", "mesoscan", "haus"]
for f in ["tif", "binary", "bruker", "sbx", "h5", "movie", "nd2", "mesoscan", "raw"]
]
self.inputformat.currentTextChanged.connect(self.parse_inputformat)
self.layout.addWidget(self.inputformat, 2, 0, 1, 1)
Expand Down
1 change: 1 addition & 0 deletions suite2p/io/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu.
"""
from .h5 import h5py_to_binary
from .raw import raw_to_binary
from .nwb import save_nwb, read_nwb, nwb_to_binary
from .save import combined, compute_dydx, save_mat
from .sbx import sbx_to_binary
Expand Down
308 changes: 308 additions & 0 deletions suite2p/io/raw.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,308 @@
"""
Copyright © 2023 Yoav Livneh Lab, Authored by Yael Prilutski.
"""

import numpy as np

from os import makedirs, listdir
from os.path import isdir, isfile, getsize, join

try:
from xmltodict import parse
HAS_XML = True
except (ModuleNotFoundError, ImportError):
HAS_XML = False

EXTENSION = 'raw'


def raw_to_binary(ops, use_recorded_defaults=True):

""" Finds RAW files and writes them to binaries
Parameters
----------
ops : dictionary
"data_path"
use_recorded_defaults : bool
Recorded session parameters are used when 'True',
otherwise |ops| is expected to contain the following (additional) keys:
"nplanes",
"nchannels",
"fs"
Returns
-------
ops : dictionary of first plane
"""

if not HAS_XML:
raise ImportError("xmltodict is required for RAW file support (pip install xmltodict)")

# Load raw file configurations
raw_file_configurations = [_RawFile(path) for path in ops['data_path']]

# Split ops by captured planes
ops_paths = _initialize_destination_files(ops, raw_file_configurations, use_recorded_defaults=use_recorded_defaults)

# Convert all runs in order
for path in ops['data_path']:
print(f'Converting raw to binary: `{path}`')
ops_loaded = [np.load(i, allow_pickle=True)[()] for i in ops_paths]
_raw2bin(ops_loaded, _RawFile(path))

# Reload edited ops
ops_loaded = [np.load(i, allow_pickle=True)[()] for i in ops_paths]

# Create a mean image with the final number of frames
_update_mean(ops_loaded)

# Load & return all ops
return ops_loaded[0]


def _initialize_destination_files(ops, raw_file_configurations, use_recorded_defaults=True):

""" Prepares raw2bin conversion environment (files & folders) """

configurations = [
[cfg.channel, cfg.zplanes, cfg.xpx, cfg.ypx, cfg.frame_rate, cfg.xsize, cfg.ysize]
for cfg in raw_file_configurations
]

# Make sure all ops match each other
assert all(conf == configurations[0] for conf in configurations), \
f'Data attributes do not match. Can not concatenate shapes: {[conf for conf in configurations]}'

# Load configuration from first file in paths
cfg = raw_file_configurations[0]

# Expand configuration from defaults when necessary
if use_recorded_defaults:
ops['nplanes'] = cfg.zplanes
if cfg.channel > 1:
ops['nchannels'] = 2
ops['fs'] = cfg.frame_rate

# Prepare conversion environment for all files
ops_paths = []
nplanes = ops['nplanes']
nchannels = ops['nchannels']
second_plane = False
for i in range(0, nplanes):
ops['save_path'] = join(ops['save_path0'], 'suite2p', f'plane{i}')

if ('fast_disk' not in ops) or len(ops['fast_disk']) == 0 or second_plane:
ops['fast_disk'] = ops['save_path']
second_plane = True
else:
ops['fast_disk'] = join(ops['fast_disk'], 'suite2p', f'plane{i}')

ops['ops_path'] = join(ops['save_path'], 'ops.npy')
ops['reg_file'] = join(ops['fast_disk'], 'data.bin')
isdir(ops['fast_disk']) or makedirs(ops['fast_disk'])
isdir(ops['save_path']) or makedirs(ops['save_path'])
open(ops['reg_file'], 'wb').close()
if nchannels > 1:
ops['reg_file_chan2'] = join(ops['fast_disk'], 'data_chan2.bin')
open(ops['reg_file_chan2'], 'wb').close()

ops['meanImg'] = np.zeros((cfg.xpx, cfg.ypx), np.float32)
ops['nframes'] = 0
ops['frames_per_run'] = []
if nchannels > 1:
ops['meanImg_chan2'] = np.zeros((cfg.xpx, cfg.ypx), np.float32)

# write ops files
do_registration = ops['do_registration']
ops['Ly'] = cfg.xpx
ops['Lx'] = cfg.ypx
if not do_registration:
ops['yrange'] = np.array([0, ops['Ly']])
ops['xrange'] = np.array([0, ops['Lx']])

ops_paths.append(ops['ops_path'])
np.save(ops['ops_path'], ops)

# Environment ready;
return ops_paths


def _raw2bin(all_ops, cfg):

""" Converts a single RAW file to BIN format """

frames_in_chunk = int(all_ops[0]['batch_size'])

with open(cfg.path, 'rb') as raw_file:
chunk = frames_in_chunk * cfg.xpx * cfg.ypx * cfg.channel * cfg.recorded_planes * 2
raw_data_chunk = raw_file.read(chunk)
while raw_data_chunk:
data = np.frombuffer(raw_data_chunk, dtype=np.int16)
current_frames = int(len(data) / cfg.xpx / cfg.ypx / cfg.recorded_planes)

if cfg.channel > 1:
channel_a, channel_b = _split_into_2_channels(data.reshape(
current_frames * cfg.recorded_planes, cfg.xpx, cfg.ypx))
reshaped_data = []
for i in range(cfg.recorded_planes):
channel_a_plane = channel_a[i::cfg.recorded_planes]
channel_b_plane = channel_b[i::cfg.recorded_planes]
reshaped_data.append([channel_a_plane, channel_b_plane])

else:
reshaped_data = data.reshape(cfg.recorded_planes, current_frames, cfg.xpx, cfg.ypx)

for plane in range(0, cfg.zplanes):
ops = all_ops[plane]
plane_data = reshaped_data[plane]

if cfg.channel > 1:
with open(ops['reg_file'], 'ab') as bin_file:
bin_file.write(bytearray(plane_data[0].astype(np.int16)))
with open(ops['reg_file_chan2'], 'ab') as bin_file2:
bin_file2.write(bytearray(plane_data[1].astype(np.int16)))
ops['meanImg'] += plane_data[0].astype(np.float32).sum(axis=0)
ops['meanImg_chan2'] = ops['meanImg_chan2'] + plane_data[1].astype(np.float32).sum(axis=0)

else:
with open(ops['reg_file'], 'ab') as bin_file:
bin_file.write(bytearray(plane_data.astype(np.int16)))
ops['meanImg'] = ops['meanImg'] + plane_data.astype(np.float32).sum(axis=0)

raw_data_chunk = raw_file.read(chunk)

for ops in all_ops:
total_frames = int(cfg.size / cfg.xpx / cfg.ypx / cfg.recorded_planes / cfg.channel / 2)
ops['frames_per_run'].append(total_frames)
ops['nframes'] += total_frames
np.save(ops['ops_path'], ops)


def _split_into_2_channels(data):

""" Utility function, used during conversion - splits given raw data into 2 separate channels """

frames = data.shape[0]
channel_a_index = list(filter(lambda x: x % 2 == 0, range(frames)))
channel_b_index = list(filter(lambda x: x % 2 != 0, range(frames)))
return data[channel_a_index], data[channel_b_index]


def _update_mean(ops_loaded):

""" Adjusts all "meanImg" values at the end of raw-to-binary conversion. """

for ops in ops_loaded:
ops['meanImg'] /= ops['nframes']
np.save(ops['ops_path'], ops)


class _RawConfig:

""" Handles XML configuration parsing and exposes video shape & parameters for Thorlabs RAW files """

def __init__(self, raw_file_size, xml_path):

assert isfile(xml_path)

self._xml_path = xml_path

self.zplanes = 1
self.recorded_planes = 1

self.xpx = None
self.ypx = None
self.channel = None
self.frame_rate = None
self.xsize = None
self.ysize = None
self.nframes = None

# Load configuration defaults
with open(self._xml_path, 'r', encoding='utf-8') as file:
self._load_xml_config(raw_file_size, parse(file.read()))

# Make sure all fields have been filled
assert None not in (self.xpx, self.ypx, self.channel, self.frame_rate, self.xsize, self.ysize, self.nframes)

# Extract data shape
self._shape = self._find_shape()

@property
def shape(self): return self._shape

def _find_shape(self):

""" Discovers data dimensions """

shape = [self.nframes, self.xpx, self.ypx]
if self.recorded_planes > 1:
shape.insert(0, self.recorded_planes)
if self.channel > 1:
shape[0] = self.nframes * 2
return shape

def _load_xml_config(self, raw_file_size, xml):

""" Loads recording parameters from attached XML;
:param raw_file_size: Size (in bytes) of main RAW file
:param xml: Original XML contents as created during data acquisition (pre-parsed to a python dictionary) """

xml_data = xml['ThorImageExperiment']

self.xpx = int(xml_data['LSM']['@pixelX'])
self.ypx = int(xml_data['LSM']['@pixelY'])
self.channel = int(xml_data['LSM']['@channel'])
self.frame_rate = float(xml_data['LSM']['@frameRate'])
self.xsize = float(xml_data['LSM']['@widthUM'])
self.ysize = float(xml_data['LSM']['@heightUM'])
self.nframes = int(xml_data['Streaming']['@frames'])

flyback = int(xml_data['Streaming']['@flybackFrames'])
zenable = int(xml_data['Streaming']['@zFastEnable'])
planes = int(xml_data['ZStage']['@steps'])

if self.channel > 1:
self.channel = 2

if zenable > 0:
self.zplanes = planes
self.recorded_planes = flyback + self.zplanes
self.nframes = int(self.nframes / self.recorded_planes)

if xml_data['ExperimentStatus']['@value'] == 'Stopped':
# Recording stopped in the middle, the written frame number isn't correct
all_frames = int(raw_file_size / self.xpx / self.ypx / self.recorded_planes / self.channel / 2)
self.nframes = int(all_frames / self.recorded_planes)


class _RawFile(_RawConfig):

""" These objects represents all recording parameters per single Thorlabs RAW file """

_MAIN_FILE_SUFFIX = f'001.{EXTENSION}'

def __init__(self, dir_name):
self._dirname = dir_name
filenames = listdir(dir_name)

# Find main raw file
main_files = [fn for fn in filenames if fn.lower().endswith(self._MAIN_FILE_SUFFIX)]
assert 1 == len(main_files), f'Corrupted directory structure: "{dir_name}"'
self._raw_file_path = join(dir_name, main_files[0])
self._raw_file_size = getsize(self._raw_file_path)

# Load XML config
xml_files = [fn for fn in filenames if fn.lower().endswith('.xml')]
assert 1 == len(xml_files), f'Missing required XML configuration file from dir="{dir_name}"'
_RawConfig.__init__(self, self._raw_file_size, join(dir_name, xml_files[0]))

@property
def path(self): return self._raw_file_path

@property
def size(self): return self._raw_file_size
13 changes: 2 additions & 11 deletions suite2p/run_s2p.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,12 +14,6 @@

from . import extraction, io, registration, detection, classification, default_ops

try:
from haussmeister import haussio
HAS_HAUS = True
except ImportError:
HAS_HAUS = False

try:
import pynwb
HAS_NWB = True
Expand Down Expand Up @@ -466,8 +460,6 @@ def run_s2p(ops={}, db={}, server={}):
ops["input_format"] = "nd2"
if not HAS_ND2:
raise ImportError("nd2 not found; pip install nd2")
elif HAS_HAUS:
ops["input_format"] = "haus"
elif not "input_format" in ops:
ops["input_format"] = "tif"
elif ops["input_format"] == "movie":
Expand All @@ -486,9 +478,8 @@ def run_s2p(ops={}, db={}, server={}):
io.nd2_to_binary,
"mesoscan":
io.mesoscan_to_binary,
"haus":
lambda ops: haussio.load_haussio(ops["data_path"][0]).tosuite2p(ops.
copy()),
"raw":
io.raw_to_binary,
"bruker":
io.ome_to_binary,
"movie":
Expand Down

0 comments on commit 193e7f1

Please sign in to comment.