Skip to content

Commit

Permalink
Merge branch 'master' into release/552-release-candidate
Browse files Browse the repository at this point in the history
  • Loading branch information
maziyarpanahi committed Dec 9, 2024
2 parents 59f91bc + 2482436 commit 48c61bb
Show file tree
Hide file tree
Showing 6 changed files with 535 additions and 0 deletions.
86 changes: 86 additions & 0 deletions docs/_posts/ahmedlone127/2024-11-26-mini_cpm_2b_8bit_xx.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
---
layout: model
title: mini_cpm_2b_8bit model from
author: John Snow Labs
name: mini_cpm_2b_8bit
date: 2024-11-26
tags: [en, open_source, pipeline, openvino, xx]
task: Text Generation
language: xx
edition: Spark NLP 5.5.1
spark_version: 3.0
supported: true
engine: openvino
annotator: CPMTransformer
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained CPMTransformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mini_cpm_2b_8bit` is a multilingual model originally trained by openbmb.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mini_cpm_2b_8bit_xx_5.5.1_3.0_1732658809236.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mini_cpm_2b_8bit_xx_5.5.1_3.0_1732658809236.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")

seq2seq = CPMTransformer.pretrained("mini_cpm_2b_8bit","xx") \
.setInputCols(["documents"]) \
.setOutputCol("generation")

pipeline = Pipeline().setStages([documentAssembler, seq2seq])
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text")
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)

```
```scala

val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val seq2seq = CPMTransformer.pretrained("mini_cpm_2b_8bit","xx")
.setInputCols(Array("documents"))
.setOutputCol("generation")

val pipeline = new Pipeline().setStages(Array(documentAssembler, seq2seq))
val data = Seq("I love spark-nlp").toDF("text")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)

```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|mini_cpm_2b_8bit|
|Compatibility:|Spark NLP 5.5.1+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents]|
|Output Labels:|[generation]|
|Language:|xx|
|Size:|3.0 GB|

## References

https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16
86 changes: 86 additions & 0 deletions docs/_posts/ahmedlone127/2024-11-27-nllb_distilled_600M_8int_xx.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
---
layout: model
title: nllb_distilled_600M_8int model from Facebook
author: John Snow Labs
name: nllb_distilled_600M_8int
date: 2024-11-27
tags: [en, open_source, pipeline, openvino, xx]
task: Text Generation
language: xx
edition: Spark NLP 5.5.1
spark_version: 3.0
supported: true
engine: openvino
annotator: NLLBTransformer
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained NLLBTransformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nllb_distilled_600M_8int` is a Multilingual model originally trained by facebook.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nllb_distilled_600M_8int_xx_5.5.1_3.0_1732741416718.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nllb_distilled_600M_8int_xx_5.5.1_3.0_1732741416718.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")

seq2seq = NLLBTransformer.pretrained("mini_cpm_2b_8bit","xx") \
.setInputCols(["documents"]) \
.setOutputCol("generation")

pipeline = Pipeline().setStages([documentAssembler, seq2seq])
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text")
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)

```
```scala

val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val seq2seq = NLLBTransformer.pretrained("mini_cpm_2b_8bit","xx")
.setInputCols(Array("documents"))
.setOutputCol("generation")

val pipeline = new Pipeline().setStages(Array(documentAssembler, seq2seq))
val data = Seq("I love spark-nlp").toDF("text")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)

```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|nllb_distilled_600M_8int|
|Compatibility:|Spark NLP 5.5.1+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents]|
|Output Labels:|[generation]|
|Language:|xx|
|Size:|842.9 MB|

## References

https://huggingface.co/facebook/nllb-200-distilled-600M
86 changes: 86 additions & 0 deletions docs/_posts/ahmedlone127/2024-11-27-nomic_embed_v1_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
---
layout: model
title: nomic_embed_v1 model from nomic-ai
author: John Snow Labs
name: nomic_embed_v1
date: 2024-11-27
tags: [en, open_source, openvino]
task: Embeddings
language: en
edition: Spark NLP 5.5.1
spark_version: 3.0
supported: true
engine: openvino
annotator: NomicEmbeddings
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained NomicEmbeddings, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mini_cpm_2b_8bit` is a multilingual model originally trained by openbmb.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nomic_embed_v1_en_5.5.1_3.0_1732743647389.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nomic_embed_v1_en_5.5.1_3.0_1732743647389.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")

embeddings = NomicEmbeddings.pretrained("nomic_embed_v1","en") \
.setInputCols(["document"]) \
.setOutputCol("embeddings")

pipeline = Pipeline().setStages([documentAssembler, embeddings])
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text")
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)

```
```scala

val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val embeddings = NomicEmbeddings.pretrained("nomic_embed_v1","en")
.setInputCols(Array("document"))
.setOutputCol("embeddings")

val pipeline = new Pipeline().setStages(Array(documentAssembler, embeddings))
val data = Seq("I love spark-nlp").toDF("text")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)

```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|nomic_embed_v1|
|Compatibility:|Spark NLP 5.5.1+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents]|
|Output Labels:|[generation]|
|Language:|en|
|Size:|255.0 MB|

## References

https://huggingface.co/nomic-ai/nomic-embed-text-v1
86 changes: 86 additions & 0 deletions docs/_posts/ahmedlone127/2024-11-29-phi_3_mini_128k_instruct_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
---
layout: model
title: phi_3_mini_128k_instruct model from microsoft
author: John Snow Labs
name: phi_3_mini_128k_instruct
date: 2024-11-29
tags: [en, open_source, openvino]
task: Text Generation
language: en
edition: Spark NLP 5.5.1
spark_version: 3.0
supported: true
engine: openvino
annotator: Phi3Transformer
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained Phi3Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`phi_3_mini_128k_instruct` is a english model originally trained by openbmb.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/phi_3_mini_128k_instruct_en_5.5.1_3.0_1732897700551.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/phi_3_mini_128k_instruct_en_5.5.1_3.0_1732897700551.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")

seq2seq = Phi3Transformer.pretrained("phi_3_mini_128k_instruct","en") \
.setInputCols(["document"]) \
.setOutputCol("generation")

pipeline = Pipeline().setStages([documentAssembler, seq2seq])
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text")
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)

```
```scala

val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val seq2seq = Phi3Transformer.pretrained("phi_3_mini_128k_instruct","en")
.setInputCols(Array("document"))
.setOutputCol("generation")

val pipeline = new Pipeline().setStages(Array(documentAssembler, seq2seq))
val data = Seq("I love spark-nlp").toDF("text")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)

```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|phi_3_mini_128k_instruct|
|Compatibility:|Spark NLP 5.5.1+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents]|
|Output Labels:|[generation]|
|Language:|en|
|Size:|3.5 GB|

## References

https://huggingface.co/microsoft/Phi-3-mini-128k-instruct
Loading

0 comments on commit 48c61bb

Please sign in to comment.