-
Notifications
You must be signed in to change notification settings - Fork 715
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'master' into release/552-release-candidate
- Loading branch information
Showing
6 changed files
with
535 additions
and
0 deletions.
There are no files selected for viewing
86 changes: 86 additions & 0 deletions
86
docs/_posts/ahmedlone127/2024-11-26-mini_cpm_2b_8bit_xx.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
--- | ||
layout: model | ||
title: mini_cpm_2b_8bit model from | ||
author: John Snow Labs | ||
name: mini_cpm_2b_8bit | ||
date: 2024-11-26 | ||
tags: [en, open_source, pipeline, openvino, xx] | ||
task: Text Generation | ||
language: xx | ||
edition: Spark NLP 5.5.1 | ||
spark_version: 3.0 | ||
supported: true | ||
engine: openvino | ||
annotator: CPMTransformer | ||
article_header: | ||
type: cover | ||
use_language_switcher: "Python-Scala-Java" | ||
--- | ||
|
||
## Description | ||
|
||
Pretrained CPMTransformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mini_cpm_2b_8bit` is a multilingual model originally trained by openbmb. | ||
|
||
{:.btn-box} | ||
<button class="button button-orange" disabled>Live Demo</button> | ||
<button class="button button-orange" disabled>Open in Colab</button> | ||
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mini_cpm_2b_8bit_xx_5.5.1_3.0_1732658809236.zip){:.button.button-orange.button-orange-trans.arr.button-icon} | ||
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mini_cpm_2b_8bit_xx_5.5.1_3.0_1732658809236.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} | ||
|
||
## How to use | ||
|
||
|
||
|
||
<div class="tabs-box" markdown="1"> | ||
{% include programmingLanguageSelectScalaPythonNLU.html %} | ||
```python | ||
|
||
documentAssembler = DocumentAssembler() \ | ||
.setInputCol("text") \ | ||
.setOutputCol("document") | ||
|
||
seq2seq = CPMTransformer.pretrained("mini_cpm_2b_8bit","xx") \ | ||
.setInputCols(["documents"]) \ | ||
.setOutputCol("generation") | ||
|
||
pipeline = Pipeline().setStages([documentAssembler, seq2seq]) | ||
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") | ||
pipelineModel = pipeline.fit(data) | ||
pipelineDF = pipelineModel.transform(data) | ||
|
||
``` | ||
```scala | ||
|
||
val documentAssembler = new DocumentAssembler() | ||
.setInputCol("text") | ||
.setOutputCol("document") | ||
|
||
val seq2seq = CPMTransformer.pretrained("mini_cpm_2b_8bit","xx") | ||
.setInputCols(Array("documents")) | ||
.setOutputCol("generation") | ||
|
||
val pipeline = new Pipeline().setStages(Array(documentAssembler, seq2seq)) | ||
val data = Seq("I love spark-nlp").toDF("text") | ||
val pipelineModel = pipeline.fit(data) | ||
val pipelineDF = pipelineModel.transform(data) | ||
|
||
``` | ||
</div> | ||
|
||
{:.model-param} | ||
## Model Information | ||
|
||
{:.table-model} | ||
|---|---| | ||
|Model Name:|mini_cpm_2b_8bit| | ||
|Compatibility:|Spark NLP 5.5.1+| | ||
|License:|Open Source| | ||
|Edition:|Official| | ||
|Input Labels:|[documents]| | ||
|Output Labels:|[generation]| | ||
|Language:|xx| | ||
|Size:|3.0 GB| | ||
|
||
## References | ||
|
||
https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16 |
86 changes: 86 additions & 0 deletions
86
docs/_posts/ahmedlone127/2024-11-27-nllb_distilled_600M_8int_xx.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
--- | ||
layout: model | ||
title: nllb_distilled_600M_8int model from Facebook | ||
author: John Snow Labs | ||
name: nllb_distilled_600M_8int | ||
date: 2024-11-27 | ||
tags: [en, open_source, pipeline, openvino, xx] | ||
task: Text Generation | ||
language: xx | ||
edition: Spark NLP 5.5.1 | ||
spark_version: 3.0 | ||
supported: true | ||
engine: openvino | ||
annotator: NLLBTransformer | ||
article_header: | ||
type: cover | ||
use_language_switcher: "Python-Scala-Java" | ||
--- | ||
|
||
## Description | ||
|
||
Pretrained NLLBTransformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nllb_distilled_600M_8int` is a Multilingual model originally trained by facebook. | ||
|
||
{:.btn-box} | ||
<button class="button button-orange" disabled>Live Demo</button> | ||
<button class="button button-orange" disabled>Open in Colab</button> | ||
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nllb_distilled_600M_8int_xx_5.5.1_3.0_1732741416718.zip){:.button.button-orange.button-orange-trans.arr.button-icon} | ||
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nllb_distilled_600M_8int_xx_5.5.1_3.0_1732741416718.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} | ||
|
||
## How to use | ||
|
||
|
||
|
||
<div class="tabs-box" markdown="1"> | ||
{% include programmingLanguageSelectScalaPythonNLU.html %} | ||
```python | ||
|
||
documentAssembler = DocumentAssembler() \ | ||
.setInputCol("text") \ | ||
.setOutputCol("document") | ||
|
||
seq2seq = NLLBTransformer.pretrained("mini_cpm_2b_8bit","xx") \ | ||
.setInputCols(["documents"]) \ | ||
.setOutputCol("generation") | ||
|
||
pipeline = Pipeline().setStages([documentAssembler, seq2seq]) | ||
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") | ||
pipelineModel = pipeline.fit(data) | ||
pipelineDF = pipelineModel.transform(data) | ||
|
||
``` | ||
```scala | ||
|
||
val documentAssembler = new DocumentAssembler() | ||
.setInputCol("text") | ||
.setOutputCol("document") | ||
|
||
val seq2seq = NLLBTransformer.pretrained("mini_cpm_2b_8bit","xx") | ||
.setInputCols(Array("documents")) | ||
.setOutputCol("generation") | ||
|
||
val pipeline = new Pipeline().setStages(Array(documentAssembler, seq2seq)) | ||
val data = Seq("I love spark-nlp").toDF("text") | ||
val pipelineModel = pipeline.fit(data) | ||
val pipelineDF = pipelineModel.transform(data) | ||
|
||
``` | ||
</div> | ||
|
||
{:.model-param} | ||
## Model Information | ||
|
||
{:.table-model} | ||
|---|---| | ||
|Model Name:|nllb_distilled_600M_8int| | ||
|Compatibility:|Spark NLP 5.5.1+| | ||
|License:|Open Source| | ||
|Edition:|Official| | ||
|Input Labels:|[documents]| | ||
|Output Labels:|[generation]| | ||
|Language:|xx| | ||
|Size:|842.9 MB| | ||
|
||
## References | ||
|
||
https://huggingface.co/facebook/nllb-200-distilled-600M |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
--- | ||
layout: model | ||
title: nomic_embed_v1 model from nomic-ai | ||
author: John Snow Labs | ||
name: nomic_embed_v1 | ||
date: 2024-11-27 | ||
tags: [en, open_source, openvino] | ||
task: Embeddings | ||
language: en | ||
edition: Spark NLP 5.5.1 | ||
spark_version: 3.0 | ||
supported: true | ||
engine: openvino | ||
annotator: NomicEmbeddings | ||
article_header: | ||
type: cover | ||
use_language_switcher: "Python-Scala-Java" | ||
--- | ||
|
||
## Description | ||
|
||
Pretrained NomicEmbeddings, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mini_cpm_2b_8bit` is a multilingual model originally trained by openbmb. | ||
|
||
{:.btn-box} | ||
<button class="button button-orange" disabled>Live Demo</button> | ||
<button class="button button-orange" disabled>Open in Colab</button> | ||
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nomic_embed_v1_en_5.5.1_3.0_1732743647389.zip){:.button.button-orange.button-orange-trans.arr.button-icon} | ||
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nomic_embed_v1_en_5.5.1_3.0_1732743647389.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} | ||
|
||
## How to use | ||
|
||
|
||
|
||
<div class="tabs-box" markdown="1"> | ||
{% include programmingLanguageSelectScalaPythonNLU.html %} | ||
```python | ||
|
||
documentAssembler = DocumentAssembler() \ | ||
.setInputCol("text") \ | ||
.setOutputCol("document") | ||
|
||
embeddings = NomicEmbeddings.pretrained("nomic_embed_v1","en") \ | ||
.setInputCols(["document"]) \ | ||
.setOutputCol("embeddings") | ||
|
||
pipeline = Pipeline().setStages([documentAssembler, embeddings]) | ||
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") | ||
pipelineModel = pipeline.fit(data) | ||
pipelineDF = pipelineModel.transform(data) | ||
|
||
``` | ||
```scala | ||
|
||
val documentAssembler = new DocumentAssembler() | ||
.setInputCol("text") | ||
.setOutputCol("document") | ||
|
||
val embeddings = NomicEmbeddings.pretrained("nomic_embed_v1","en") | ||
.setInputCols(Array("document")) | ||
.setOutputCol("embeddings") | ||
|
||
val pipeline = new Pipeline().setStages(Array(documentAssembler, embeddings)) | ||
val data = Seq("I love spark-nlp").toDF("text") | ||
val pipelineModel = pipeline.fit(data) | ||
val pipelineDF = pipelineModel.transform(data) | ||
|
||
``` | ||
</div> | ||
|
||
{:.model-param} | ||
## Model Information | ||
|
||
{:.table-model} | ||
|---|---| | ||
|Model Name:|nomic_embed_v1| | ||
|Compatibility:|Spark NLP 5.5.1+| | ||
|License:|Open Source| | ||
|Edition:|Official| | ||
|Input Labels:|[documents]| | ||
|Output Labels:|[generation]| | ||
|Language:|en| | ||
|Size:|255.0 MB| | ||
|
||
## References | ||
|
||
https://huggingface.co/nomic-ai/nomic-embed-text-v1 |
86 changes: 86 additions & 0 deletions
86
docs/_posts/ahmedlone127/2024-11-29-phi_3_mini_128k_instruct_en.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
--- | ||
layout: model | ||
title: phi_3_mini_128k_instruct model from microsoft | ||
author: John Snow Labs | ||
name: phi_3_mini_128k_instruct | ||
date: 2024-11-29 | ||
tags: [en, open_source, openvino] | ||
task: Text Generation | ||
language: en | ||
edition: Spark NLP 5.5.1 | ||
spark_version: 3.0 | ||
supported: true | ||
engine: openvino | ||
annotator: Phi3Transformer | ||
article_header: | ||
type: cover | ||
use_language_switcher: "Python-Scala-Java" | ||
--- | ||
|
||
## Description | ||
|
||
Pretrained Phi3Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`phi_3_mini_128k_instruct` is a english model originally trained by openbmb. | ||
|
||
{:.btn-box} | ||
<button class="button button-orange" disabled>Live Demo</button> | ||
<button class="button button-orange" disabled>Open in Colab</button> | ||
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/phi_3_mini_128k_instruct_en_5.5.1_3.0_1732897700551.zip){:.button.button-orange.button-orange-trans.arr.button-icon} | ||
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/phi_3_mini_128k_instruct_en_5.5.1_3.0_1732897700551.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} | ||
|
||
## How to use | ||
|
||
|
||
|
||
<div class="tabs-box" markdown="1"> | ||
{% include programmingLanguageSelectScalaPythonNLU.html %} | ||
```python | ||
|
||
documentAssembler = DocumentAssembler() \ | ||
.setInputCol("text") \ | ||
.setOutputCol("document") | ||
|
||
seq2seq = Phi3Transformer.pretrained("phi_3_mini_128k_instruct","en") \ | ||
.setInputCols(["document"]) \ | ||
.setOutputCol("generation") | ||
|
||
pipeline = Pipeline().setStages([documentAssembler, seq2seq]) | ||
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") | ||
pipelineModel = pipeline.fit(data) | ||
pipelineDF = pipelineModel.transform(data) | ||
|
||
``` | ||
```scala | ||
|
||
val documentAssembler = new DocumentAssembler() | ||
.setInputCol("text") | ||
.setOutputCol("document") | ||
|
||
val seq2seq = Phi3Transformer.pretrained("phi_3_mini_128k_instruct","en") | ||
.setInputCols(Array("document")) | ||
.setOutputCol("generation") | ||
|
||
val pipeline = new Pipeline().setStages(Array(documentAssembler, seq2seq)) | ||
val data = Seq("I love spark-nlp").toDF("text") | ||
val pipelineModel = pipeline.fit(data) | ||
val pipelineDF = pipelineModel.transform(data) | ||
|
||
``` | ||
</div> | ||
|
||
{:.model-param} | ||
## Model Information | ||
|
||
{:.table-model} | ||
|---|---| | ||
|Model Name:|phi_3_mini_128k_instruct| | ||
|Compatibility:|Spark NLP 5.5.1+| | ||
|License:|Open Source| | ||
|Edition:|Official| | ||
|Input Labels:|[documents]| | ||
|Output Labels:|[generation]| | ||
|Language:|en| | ||
|Size:|3.5 GB| | ||
|
||
## References | ||
|
||
https://huggingface.co/microsoft/Phi-3-mini-128k-instruct |
Oops, something went wrong.