Skip to content

Collection of generative models, e.g. GAN, VAE in Tensorflow, Keras, and Pytorch.

Notifications You must be signed in to change notification settings

JingweiJ/generative-models

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Generative Models

Collection of generative models, e.g. GAN, VAE in Tensorflow, Keras, and Pytorch.

Note: generated samples will be stored in GAN/{gan_model}/out or VAE/{vae_model}/out directory during training.

What's in it?

  1. Generative Adversarial Nets (GAN)
  2. Vanilla GAN
  3. Conditional GAN
  4. InfoGAN
  5. Wasserstein GAN
  6. Mode Regularized GAN
  7. Variational Autoencoder (VAE)
  8. Vanilla VAE
  9. Conditional VAE
  10. Denoising VAE
  11. Adversarial Autoencoder
  12. Adversarial Variational Bayes

Dependencies

  1. Install miniconda http://conda.pydata.org/miniconda.html
  2. Do conda env create
  3. Enter the env source activate generative-models
  4. Install Tensorflow
  5. Install Pytorch

About

Collection of generative models, e.g. GAN, VAE in Tensorflow, Keras, and Pytorch.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%