This repo holds code for ParaTransCNN: Parallelized TransCNN Encoder for Medical Image Segmentation
We trained on NVIDIA RTX 3090, where python 3.9.10 and torch 1.12.1 on ubuntu 22.04.
We use the libraries of these versions:
- Python 3.9.10
- Torch 1.12.1+cu113
- torchvision 0.13.1+cu113
- numpy 1.21.5
You can pip the same experimental environment as us through requirements
pip install -r requirements.txt
- Synapse Dataset: please go to "./datasets/README.md" for the details about preparing preprocessed Synapse dataset or download the Synapse Dataset from here.
- AVT Dataset: please go to "./datasets/README.md" for the details about preparing preprocessed AVT dataset. The preprocessed dataset is here.
- Run the following code to train ParaTransCNN on the Synapse Dataset:
python train.py --dataset Synapse --train_path <your path to Synapse train dataset> --model_name ParaTransCNN --max_epochs 150 --batch_size 4 --base_lr 0.01
- Run the following code to train ParaTransCNN on the AVT Dataset:
python train.py --dataset AVT --train_path <your path to AVT train dataset> --model_name ParaTransCNN --max_epochs 150 --batch_size 4 --base_lr 0.01
- Run the following code to test the trained ParaTransCNN on the Synapse Dataset:
python test.py --dataset Synapse --volume_path <your path to Synapse test dataset> --model_name ParaTransCNN --max_epochs 150 --batch_size 4 --base_lr 0.01
- Run the following code to test the trained ParaTransCNN on the AVT Dataset:
python test.py --dataset AVT --volume_path <your path to AVT test dataset> --model_name ParaTransCNN --max_epochs 150 --batch_size 4 --base_lr 0.01
- Synapse
DSC(%) |
HD |
Aorta |
Gallbladder |
Kidney(L) |
Kidney(R) |
Liver |
Pancreas |
Spleen |
Stomach |
|
---|---|---|---|---|---|---|---|---|---|---|
DARR | 69.77 | - | 74.74 | 53.77 | 72.31 | 73.24 | 94.08 | 54.18 | 89.90 | 45.96 |
R50 U-Net | 74.68 | 36.87 | 87.74 | 63.66 | 80.60 | 78.19 | 93.74 | 56.90 | 85.87 | 74.16 |
U-Net | 76.85 | 39.70 | 89.07 | 69.72 | 77.77 | 68.60 | 93.43 | 53.98 | 86.67 | 75.58 |
R50 Att-UNet | 75.57 | 36.97 | 55.92 | 63.91 | 79.20 | 72.71 | 93.56 | 49.37 | 87.19 | 74.95 |
Att-UNet | 77.77 | 36.02 | 89.55 | 68.88 | 77.98 | 71.11 | 93.57 | 58.04 | 87.30 | 75.75 |
R50 ViT | 71.29 | 32.87 | 73.73 | 55.13 | 75.80 | 72.20 | 91.51 | 45.99 | 81.99 | 73.95 |
TransUnet | 77.48 | 31.69 | 87.23 | 63.13 | 81.87 | 77.02 | 94.08 | 55.86 | 85.08 | 75.62 |
SwinUnet | 79.13 | 21.55 | 85.47 | 66.53 | 83.28 | 79.61 | 94.29 | 56.58 | 90.66 | 76.60 |
TransDeepLab | 80.16 | 21.25 | 86.04 | 69.16 | 84.08 | 79.88 | 93.53 | 61.19 | 89.00 | 78.40 |
HiFormer | 80.39 | 14.70 | 86.21 | 65.69 | 85.23 | 79.77 | 94.61 | 59.52 | 90.99 | 81.08 |
MISSFormer | 81.96 | 18.20 | 86.99 | 68.65 | 85.21 | 82.00 | 94.41 | 65.67 | 91.92 | 80.81 |
TransCeption | 82.24 | 20.89 | 87.60 | 71.82 | 86.23 | 80.29 | 95.01 | 65.27 | 91.68 | 80.02 |
DAE-Former | 82.43 | 17.46 | 88.96 | 72.30 | 86.08 | 80.88 | 94.98 | 65.12 | 91.94 | 79.19 |
ParaTransCNN | 83.86 | 15.86 | 88.12 | 68.97 | 87.99 | 83.84 | 95.01 | 69.79 | 92.71 | 84.43 |
- AVT
- ACDC
- Kvasir_SEG
Dice |
Jaccard |
Precision |
Recall |
|
---|---|---|---|---|
U-Net | 0.830530 | 0.748300 | 0.860328 | 0.858857 |
UNet++ | 0.795231 | 0.705255 | 0.825769 | 0.840401 |
Att-UNet | 0.828564 | 0.748071 | 0.848016 | 0.863609 |
TransUnet | 0.869120 | 0.799637 | 0.895035 | 0.886673 |
SwinUnet | 0.854450 | 0.777262 | 0.890461 | 0.862594 |
TransDeepLab | 0.859171 | 0.779644 | 0.881949 | 0.883266 |
HiFormer | 0.859615 | 0.786705 | 0.879861 | 0.884120 |
MISSFormer | 0.715535 | 0.611769 | 0.760764 | 0.765871 |
TransCeption | 0.773330 | 0.676522 | 0.801368 | 0.813837 |
DAE-Former | 0.779659 | 0.680100 | 0.806010 | 0.807978 |
ParaTransCNN | 0.882230 | 0.819137 | 0.895940 | 0.900321 |
- BUSI(benign & malignant)
Dice |
Jaccard |
Precision |
Recall |
|
---|---|---|---|---|
U-Net | 0.779577 | 0.698415 | 0.795101 | 0.811817 |
UNet++ | 0.751396 | 0.665028 | 0.774793 | 0.780807 |
Att-UNet | 0.784430 | 0.701824 | 0.820558 | 0.792074 |
TransUnet | 0.791364 | 0.711470 | 0.810834 | 0.822213 |
SwinUnet | 0.781966 | 0.694188 | 0.822793 | 0.782219 |
TransDeepLab | 0.778597 | 0.693664 | 0.799186 | 0.791463 |
HiFormer | 0.779438 | 0.699652 | 0.795937 | 0.803998 |
MISSFormer | 0.731416 | 0.633783 | 0.766812 | 0.754716 |
TransCeption | 0.758622 | 0.660874 | 0.803228 | 0.765918 |
DAE-Former | 0.733205 | 0.634020 | 0.775104 | 0.745468 |
ParaTransCNN | 0.809358 | 0.729952 | 0.850570 | 0.804386 |