caffe with some things for my experiment(class classification with clickture data)
这是一个为了完成我的实验,而添加过一些loss层,小工具和代码的caffe,具体添加的东西我会一项一项加上来介绍:
the objective function is definede as:
Cosine Loss的目标函数定义如下:
VGG19 layer and solver(include ordinary and fixed)
vgg19 层的模型结构和solver文件,有原版和论文作者修改过的
1.make_imagenet_mean:
compute mean
计算均值文件
- meantonpy:
covert .binaryproto to .npy for predicting
将mean文件转化为npy格式,python调用预测时需要用
3.predict:
input a picture and outpu classification
输入图片并输出分类结果
-
HDF5 and LMDB
to creat lmdb/hdf5 files:
生成LMDB/HDF5的文件,其中HDF5为了保证每个文件小于2G,每3000张图片生成一个HDF5文件
LMDB中,一个是train_val生成,一个只生成train -
random:
load filename.txt type.txt wordweight.txt for shuffling
读取文件名 种类标签和点击特征文件,随机生成打乱的文件
3.copyselpic:
read txt and copy selected picutre to objective file
读取txt文件将选中的图片文件拷贝到指定目录
4.selectpicture:
select picture by click times and possibility
通过预测的可能性和点击量选择图片
-
tokenize:
load queryname.txt query_clickcout.txt to creat word.txt (word sorted by click times)
读取词组名 词组点击次数文件,生成词文件,按照词的点击量排序 -
tf-idf:
to create tf-idf file
读取每张图片的非空词组点击次数文件(行号是图片的索引,每行格式为:query索引 点击次数),词组名文件,选出的词组文件。 生成每张图片的词频文件,然后读取词频文件,生成每张图片的tf-idf文件。 -
createquerymatrix:
createquerymatrix
通过被选中的图片txt生成词组点击矩阵和文件名