This is the official repository for The Critique of Critique.
- [2024/05/15] Our paper has been accepted to Findings of ACL 2024! 🎉
We introduce MetaCritique, a new judge that can effectively evaluate human-written or LLMs-generated critique by generating critique.
Meta-P: precision score of MetaCritique that evaluates factuality of hypothesis critique.
Meta-R: recall score of MetaCritique that evaluates comprehensiveness of hypothesis critique.
Meta-F1: overall rating that is harmonic mean of precision score and recall score.
We release the benchmarking results of multiple critique models.
Critique Model | Meta-Precision | Meta-Recall | Meta-F1 score |
---|---|---|---|
AUTO-J | 76.43 | 70.65 | 71.14 |
GPT 3.5 | 80.79 | 64.27 | 68.72 |
UltraCM | 73.64 | 66.77 | 67.79 |
Human Critique from Shepherd | 83.19 | 60.65 | 64.02 |
SelFee | 69.56 | 51.05 | 54.22 |
pip install meta-critique
from meta_critique import MetaCritique
api_key = ... # here is your OpenAi key
inputs = [
{"question": "<question>", "response": "<response1>", "hypothesis_critique": "<hypothesis_critique>"},
{"question": "<question>", "response": "<response2>", "hypothesis_critique": "<hypothesis_critique>"},
...
]
meta_critique_instance = MetaCritique(
model_type="gpt-4",
batch_size=5,
api_key=api_key,
api_base=None,
seed=None,
cache_dir="tmp_cache",
)
precision_score, recall_score, f1_score = meta_critique_instance.score(inputs)
where
question
: The user query for the model to generate the response.response
: The response generated by the model.hypothesis_critique
: The critique written by either human or LLMs.reference_answer
: (Optional) The reference answer.reference_critique
: (Optional) The reference critique.- str: a critique text
- dict: {"critique": <reference_critique>, "aius": <optional_aius_from_reference_critique>}
You can find a test sample from eval_examples/test_samples.json
You are encouraged to create a virtual environment through conda
.
conda create -n your_env_name python==3.9
conda activate your_env_name
git clone [email protected]:GAIR-NLP/MetaCritique.git
cd MetaCritique
Then, we have to install all the libraries listed in requirements.txt
.
pip install -r requirements.txt
Our implementation is based on GPT-4, so you should config your openai API in the file (meta_critique/openai_config.py).
We provide two options to run MetaCritique evaluation.
Option 1: If you can stably use OpenAI api, we provide a one-step version of MetaCritique.
Option 2: If you cannot stably use OpenAI api, we provide a step-by-step version of MetaCritique with cache. When you fail in middle step, you can restart your code and continue to calculate MetaCritique scores.
python meta_critique/meta_critique.py --benchmark_data data/benchmark_data.json --hyp_critique eval_examples/hypothesis_critique.json --out output/hypothesis_eval_results.json
Our benchmark_data.json provides reference answer and reference critique with aius extracted by GPT-4, so you can skip step 1-3. We also provide a test hypothesis critique in eval_examples/hypothesis_critique.json.
Step by Step Usage (click to toggle the content)
python meta_critique/generate_ref_answer.py --data data/benchmark_data.json --out output/ref_answer.json
python meta_critique/generate_ref_critique.py --data data/benchmark_data.json --out output/ref_critique.json
python meta_critique/extracting_aius_for_critique.py --data output/ref_critique.json --critique output --out output/reference_aius.json
python meta_critique/extracting_aius_for_critique.py --data eval_examples/hypothesis_critique.json --critique output --out output/hypothesis_aius.json
python meta_critique/merge_files.py --data data/benchmark_data.json --hyp_critique eval_examples/hypothesis_critique.json --hyp_aius output/hypothesis_aius.json --out output/hypothesis_eval_examples.json
python meta_critique/evaluate_aiu_precision.py --data output/hypothesis_eval_data.json --out output/hypothesis_precision.json
python meta_critique/evaluate_aiu_recall.py --data output/hypothesis_eval_data.json --out output/hypothesis_recall.json
python meta_critique/cal_meta_scores.py --data output/hypothesis_eval_data.json --precision output/hypothesis_precision.json --recall output/hypothesis_recall.json --out output/hypothesis_eval_results.json
Annotation Data is the meta-evaluation dataset with human annotation.
Benchmark Data is used for leaderboard, including question, model-generated answer, reference answer, reference critique and AIUs from reference critique.
If you find our work useful or use MetaCritique, please cite our paper:
@article{sun2024metacritique,
title={The Critique of Critique},
author={Shichao Sun and Junlong Li and Weizhe Yuan and Ruifeng Yuan and Wenjie Li and Pengfei Liu},
journal={arXiv preprint arXiv:2401.04518},
year={2024},
url={https://arxiv.org/abs/2401.04518}
}