Skip to content

Commit

Permalink
Docs: Fix API reference links for the dataset config classes
Browse files Browse the repository at this point in the history
  • Loading branch information
nimashoghi committed Dec 1, 2024
1 parent 8c7446a commit ef1cfef
Showing 1 changed file with 8 additions and 8 deletions.
16 changes: 8 additions & 8 deletions docs/guides/datasets.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ MatterTune provides support for various dataset formats and sources commonly use
## XYZ Dataset
Simple and widely used atomic structure format that can be read from XYZ files.

API Reference: {py:class}`mattertune.data.xyz.XYZDatasetConfig`
API Reference: {py:class}`mattertune.configs.XYZDatasetConfig`

```python
config = mt.configs.MatterTunerConfig(
Expand All @@ -24,7 +24,7 @@ config = mt.configs.MatterTunerConfig(
## ASE Database
Direct interface with ASE database files, supporting custom property keys for energy, forces, and stress.

API Reference: {py:class}`mattertune.data.db.DBDatasetConfig`
API Reference: {py:class}`mattertune.configs.DBDatasetConfig`

```python
config = mt.configs.MatterTunerConfig(
Expand All @@ -47,7 +47,7 @@ config = mt.configs.MatterTunerConfig(
## Materials Project Dataset
Direct integration with the Materials Project database, allowing for custom queries and property retrieval.

API Reference: {py:class}`mattertune.data.mp.MPDatasetConfig`
API Reference: {py:class}`mattertune.configs.MPDatasetConfig`

```python
config = mt.configs.MatterTunerConfig(
Expand All @@ -68,7 +68,7 @@ config = mt.configs.MatterTunerConfig(
## Materials Project Trajectories (MPTraj)
Access to molecular dynamics trajectories from the Materials Project, with filtering options for system size and composition.

API Reference: {py:class}`mattertune.data.mptraj.MPTrajDatasetConfig`
API Reference: {py:class}`mattertune.configs.MPTrajDatasetConfig`

```python
config = mt.configs.MatterTunerConfig(
Expand All @@ -90,7 +90,7 @@ config = mt.configs.MatterTunerConfig(
## Matbench Dataset
Access to the Matbench benchmark datasets for materials property prediction tasks.

API Reference: {py:class}`mattertune.data.matbench.MatbenchDatasetConfig`
API Reference: {py:class}`mattertune.configs.MatbenchDatasetConfig`

```python
config = mt.configs.MatterTunerConfig(
Expand All @@ -111,7 +111,7 @@ config = mt.configs.MatterTunerConfig(
## OMAT24 Dataset
Access to the OMAT24 dataset used from FAIR Chemistry.

API Reference: {py:class}`mattertune.data.omat24.OMAT24DatasetConfig`
API Reference: {py:class}`mattertune.configs.OMAT24DatasetConfig`

```python
config = mt.configs.MatterTunerConfig(
Expand All @@ -130,7 +130,7 @@ config = mt.configs.MatterTunerConfig(
## JSON Dataset
Allows reading atomic structures and properties from JSON files with a specific schema.

API Reference: {py:class}`mattertune.data.json.JSONDatasetConfig`
API Reference: {py:class}`mattertune.configs.JSONDatasetConfig`

Expected JSON format:
```json
Expand Down Expand Up @@ -168,7 +168,7 @@ config = mt.configs.MatterTunerConfig(

The `tasks` dictionary maps property names to the corresponding JSON keys in your data file.

Each dataset configuration can be used with either `AutoSplitDataModuleConfig` for automatic train/validation splitting or `ManualSplitDataModuleConfig` for manual split specification. The examples above use `AutoSplitDataModuleConfig` for simplicity.
Each dataset configuration can be used with either {py:class}`mattertune.configs.AutoSplitDataModuleConfig` for automatic train/validation splitting or {py:class}`mattertune.configs.ManualSplitDataModuleConfig` for manual split specification. The examples above use {py:class}`mattertune.configs.AutoSplitDataModuleConfig` for simplicity.

Note that some datasets may require additional dependencies:
- Materials Project dataset requires the `mp-api` package
Expand Down

0 comments on commit ef1cfef

Please sign in to comment.