Skip to content

Commit

Permalink
Merge pull request #277 from FluxML/dev
Browse files Browse the repository at this point in the history
For a 0.6.0 release
  • Loading branch information
ablaom authored Sep 29, 2024
2 parents aea9436 + 19d4275 commit de2b3c6
Show file tree
Hide file tree
Showing 23 changed files with 1,608 additions and 390 deletions.
5 changes: 3 additions & 2 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "MLJFlux"
uuid = "094fc8d1-fd35-5302-93ea-dabda2abf845"
authors = ["Anthony D. Blaom <[email protected]>", "Ayush Shridhar <[email protected]>"]
version = "0.5.1"
version = "0.6.0"

[deps]
CategoricalArrays = "324d7699-5711-5eae-9e2f-1d82baa6b597"
Expand Down Expand Up @@ -33,6 +33,7 @@ julia = "1.9"
[extras]
CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Logging = "56ddb016-857b-54e1-b83d-db4d58db5568"
MLJBase = "a7f614a8-145f-11e9-1d2a-a57a1082229d"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
StableRNGs = "860ef19b-820b-49d6-a774-d7a799459cd3"
Expand All @@ -42,4 +43,4 @@ Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
cuDNN = "02a925ec-e4fe-4b08-9a7e-0d78e3d38ccd"

[targets]
test = ["CUDA", "cuDNN", "LinearAlgebra", "MLJBase", "Random", "StableRNGs", "StatisticalMeasures", "StatsBase", "Test"]
test = ["CUDA", "cuDNN", "LinearAlgebra", "Logging", "MLJBase", "Random", "StableRNGs", "StatisticalMeasures", "StatsBase", "Test"]
21 changes: 12 additions & 9 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,8 +1,12 @@
# MLJFlux
<div align="left">
<img width="490" alt="image" src="https://github.com/FluxML/MLJFlux.jl/assets/49572294/f28300e9-44cb-4d1a-8acf-8a682230be31">

An interface to the Flux deep learning models for the [MLJ](https://github.com/alan-turing-institute/MLJ.jl) machine learning framework

</div>

[![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://fluxml.github.io/MLJFlux.jl/dev/)

An interface to the Flux deep learning models for the
[MLJ](https://github.com/alan-turing-institute/MLJ.jl) machine
learning framework.

| Branch | Julia | CPU CI | GPU CI | Coverage |
| -------- | ----- | ------ | ----- | -------- |
Expand All @@ -21,7 +25,6 @@ learning framework.
[coveralls-img-dev]: https://coveralls.io/repos/github/alan-turing-institute/MLJFlux.jl/badge.svg?branch=dev "Code Coverage"
[coveralls-url]: https://github.com/FluxML/MLJFlux.jl/actions/workflows/ci.yml

[![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://fluxml.github.io/MLJFlux.jl/dev/)


## Code Snippet
Expand Down Expand Up @@ -56,10 +59,10 @@ Wrap in "iteration controls":
```julia
stop_conditions = [
Step(1), # Apply controls every epoch
NumberLimit(1000), # Don't train for more than 100 steps
Patience(4), # Stop after 5 iterations of deteriation in validation loss
NumberSinceBest(5), # Or if the best loss occurred 9 iterations ago
TimeLimit(30/60), # Or if 30 minutes passed
NumberLimit(1000), # Don't train for more than 1000 steps
Patience(4), # Stop after 4 iterations of deteriation in validation loss
NumberSinceBest(5), # Or if the best loss occurred 5 iterations ago
TimeLimit(30/60), # Or if 30 minutes has passed
]

validation_losses = []
Expand Down
16 changes: 11 additions & 5 deletions docs/src/extended_examples/MNIST/notebook.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,12 +3,18 @@
# This tutorial is available as a Jupyter notebook or julia script
# [here](https://github.com/FluxML/MLJFlux.jl/tree/dev/docs/src/extended_examples/MNIST).

using Pkg #!md
const DIR = @__DIR__ #!md
Pkg.activate(DIR) #!md
Pkg.instantiate() #!md
# The following code block assumes the current directory contains `Manifest.toml` and
# `Project.toml` files tested for this demonstration, available
# [here](https://github.com/FluxML/MLJFlux.jl/tree/dev/docs/src/extended_examples/MNIST).
# Otherwise, you can try running `using Pkg; Pkg.activate(temp=true)` instead, and
# manually add the relevant packages to the temporary environment created.

using Pkg
const DIR = @__DIR__
Pkg.activate(DIR)
Pkg.instantiate()

# **Julia version** is assumed to be 1.10.*
# **Julia version** is assumed to be 1.10**

using MLJ
using Flux
Expand Down
12 changes: 9 additions & 3 deletions docs/src/extended_examples/spam_detection/notebook.jl
Original file line number Diff line number Diff line change
Expand Up @@ -10,9 +10,15 @@
# **Warning.** This demo includes some non-idiomatic use of MLJ to allow use of the
# Flux.jl `Embedding` layer. It is not recommended for MLJ beginners.

using Pkg #!md
Pkg.activate(@__DIR__); #!md
Pkg.instantiate(); #!md
# The following code block assumes the current directory contains `Manifest.toml` and
# `Project.toml` files tested for this demonstration, available
# [here](https://github.com/FluxML/MLJFlux.jl/tree/dev/docs/src/extended_examples/spam_detection).
# Otherwise, you can try running `using Pkg; Pkg.activate(temp=true)` instead, and
# manually add the relevant packages to the temporary environment created.

using Pkg
Pkg.activate(@__DIR__);
Pkg.instantiate();

# ### Basic Imports
using MLJ
Expand Down
11 changes: 6 additions & 5 deletions src/MLJFlux.jl
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
module MLJFlux

export CUDALibs, CPU1

import Flux
using MLJModelInterface
using MLJModelInterface.ScientificTypesBase
Expand All @@ -17,22 +16,24 @@ import Metalhead
import Optimisers

include("utilities.jl")
const MMI=MLJModelInterface
const MMI = MLJModelInterface

include("encoders.jl")
include("entity_embedding.jl")
include("builders.jl")
include("metalhead.jl")
include("types.jl")
include("core.jl")
include("regressor.jl")
include("classifier.jl")
include("image.jl")
include("fit_utils.jl")
include("entity_embedding_utils.jl")
include("mlj_model_interface.jl")

export NeuralNetworkRegressor, MultitargetNeuralNetworkRegressor
export NeuralNetworkClassifier, NeuralNetworkBinaryClassifier, ImageClassifier
export CUDALibs, CPU1

include("deprecated.jl")


end #module
end # module
30 changes: 18 additions & 12 deletions src/classifier.jl
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,6 @@
A private method that returns the shape of the input and output of the model for given
data `X` and `y`.
"""
function MLJFlux.shape(model::NeuralNetworkClassifier, X, y)
X = X isa Matrix ? Tables.table(X) : X
Expand All @@ -14,6 +13,7 @@ function MLJFlux.shape(model::NeuralNetworkClassifier, X, y)
n_input = Tables.schema(X).names |> length
return (n_input, n_output)
end
is_embedding_enabled(::NeuralNetworkClassifier) = true

# builds the end-to-end Flux chain needed, given the `model` and `shape`:
MLJFlux.build(
Expand All @@ -29,24 +29,28 @@ MLJFlux.fitresult(
model::Union{NeuralNetworkClassifier, NeuralNetworkBinaryClassifier},
chain,
y,
) = (chain, MLJModelInterface.classes(y[1]))
ordinal_mappings = nothing,
embedding_matrices = nothing,
) = (chain, MLJModelInterface.classes(y[1]), ordinal_mappings, embedding_matrices)

function MLJModelInterface.predict(
model::NeuralNetworkClassifier,
fitresult,
Xnew,
)
chain, levels = fitresult
)
chain, levels, ordinal_mappings, _ = fitresult
Xnew = ordinal_encoder_transform(Xnew, ordinal_mappings) # what if Xnew is a matrix
X = reformat(Xnew)
probs = vcat([chain(tomat(X[:, i]))' for i in 1:size(X, 2)]...)
return MLJModelInterface.UnivariateFinite(levels, probs)
end


MLJModelInterface.metadata_model(
NeuralNetworkClassifier,
input_scitype=Union{AbstractMatrix{Continuous},Table(Continuous)},
target_scitype=AbstractVector{<:Finite},
load_path="MLJFlux.NeuralNetworkClassifier",
input_scitype = Union{AbstractMatrix{Continuous}, Table(Continuous, Finite)},
target_scitype = AbstractVector{<:Finite},
load_path = "MLJFlux.NeuralNetworkClassifier",
)

#### Binary Classifier
Expand All @@ -56,21 +60,23 @@ function MLJFlux.shape(model::NeuralNetworkBinaryClassifier, X, y)
n_input = Tables.schema(X).names |> length
return (n_input, 1) # n_output is always 1 for a binary classifier
end
is_embedding_enabled(::NeuralNetworkBinaryClassifier) = true

function MLJModelInterface.predict(
model::NeuralNetworkBinaryClassifier,
fitresult,
Xnew,
)
chain, levels = fitresult
)
chain, levels, ordinal_mappings, _ = fitresult
Xnew = ordinal_encoder_transform(Xnew, ordinal_mappings)
X = reformat(Xnew)
probs = vec(chain(X))
return MLJModelInterface.UnivariateFinite(levels, probs; augment = true)
end

MLJModelInterface.metadata_model(
NeuralNetworkBinaryClassifier,
input_scitype=Union{AbstractMatrix{Continuous},Table(Continuous)},
target_scitype=AbstractVector{<:Finite{2}},
load_path="MLJFlux.NeuralNetworkBinaryClassifier",
input_scitype = Union{AbstractMatrix{Continuous}, Table(Continuous, Finite)},
target_scitype = AbstractVector{<:Finite{2}},
load_path = "MLJFlux.NeuralNetworkBinaryClassifier",
)
23 changes: 19 additions & 4 deletions src/core.jl
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,8 @@ end
y,
) -> updated_chain, updated_optimiser_state, training_loss
**Private method.**
Update the parameters of a Flux `chain`, where:
- `model` is typically an `MLJFluxModel` instance, but could be any object such that
Expand Down Expand Up @@ -77,6 +79,8 @@ end
y,
) -> (updated_chain, updated_optimiser_state, history)
**Private method.**
Optimize a Flux model `chain`, where `(yhat, y) -> loss(yhat, y)` is the loss function
inferred from the `model`. Typically, `model` will be an `MLJFluxModel` instance, but it
could be any object such that `model.loss` is a Flux.jl loss function.
Expand Down Expand Up @@ -162,6 +166,8 @@ end
"""
gpu_isdead()
**Private method.**
Returns `true` if `acceleration=CUDALibs()` option is unavailable, and
false otherwise.
Expand All @@ -171,6 +177,8 @@ gpu_isdead() = Flux.gpu([1.0,]) isa Array
"""
nrows(X)
**Private method.**
Find the number of rows of `X`, where `X` is an `AbstractVector or
Tables.jl table.
"""
Expand Down Expand Up @@ -268,15 +276,22 @@ input `X` and target `y` in the form required by
by `model.batch_size`.)
"""
function collate(model, X, y)
function collate(model, X, y, verbosity)
row_batches = Base.Iterators.partition(1:nrows(y), model.batch_size)
Xmatrix = reformat(X)
Xmatrix = _f32(reformat(X), verbosity)
ymatrix = reformat(y)
return [_get(Xmatrix, b) for b in row_batches], [_get(ymatrix, b) for b in row_batches]
end
function collate(model::NeuralNetworkBinaryClassifier, X, y)
function collate(model::NeuralNetworkBinaryClassifier, X, y, verbosity)
row_batches = Base.Iterators.partition(1:nrows(y), model.batch_size)
Xmatrix = reformat(X)
Xmatrix = _f32(reformat(X), verbosity)
yvec = (y .== classes(y)[2])' # convert to boolean
return [_get(Xmatrix, b) for b in row_batches], [_get(yvec, b) for b in row_batches]
end

_f32(x::AbstractArray{Float32}, verbosity) = x
function _f32(x::AbstractArray, verbosity)
verbosity > 0 && @info "MLJFlux: converting input data to Float32"
return Float32.(x)
end

Loading

0 comments on commit de2b3c6

Please sign in to comment.