LSTM--->CNN-->FC-->Softmax
Input dimension:time_360
one layer
Units number:N=64
Output dimension time_N_1
Two CNN blocks each block contains filter and max pooling components
- cnn
input dimision:200_64
so the time is 200 ?
6 filters
kernel size:5_5
stride:1_1
- max pool:
size:2_2 stride:2_2
output:98_30_6
- cnn
10 filters
kernel size:5_3
stride:3*3
- max pool
kernel size:1
stride:1
del this max pool?
out put:32_10_10
Three layers
Input:32_10_10(flat to 3200*1)
- 1000
- 200
- 5
output:5_1
5 units
- Amplitude Noise Removal
使用加权平均算法对振幅进行降噪,m设置为100
- Phase Sanitization
首先对原始phase数据(180--->6*30) unwrap,然后计算出every subcarrier的均值y,利用y和x:[0:Sub-1]进行线性拟合(linear fit),最终算出calibrated phase value 并返回.
- DataProcess
使用weight moving等算法对原始数据进行处理,得到净数据
- Normalize(已经在上一步进行了归一化处理)
对净数据进行归一化处理
经过以上两步处理得到fixed、open、semi三个文件夹下的数据文件夹,每个数据文件夹下的数据都是N×360的且已经做过归一化处理
在两个方面做两组对比实验:
- Only Amplitude(Without P)
- Only Phase(Without A)
- Without Amplitude noise removal but with Phase noise removal(Without A)
- With Amplitude noise removal but without Phase noise removal(Without P)
- Amplitude with noise removal and Phase with noise removal(With P*A)
- Amplitude without noise removal and Phase without noise removal(Raw Data)
基于此,数据集应有如下几种:
-
Amplitude with noise removal
-
Phase with noise removal
-
Amplitude without noise removal (原始数据就是,但是需要将小数据集拼接成一个数据集)
-
Phase without noise removal (原始数据就是,但是需要将小数据集拼接成一个数据集)
使用以上四个数据集,组合成以下数据集进行训练:
-
Amplitude without noise removal&Phase with noise removal
-
Amplitude with noise removal&Phase without noise removal
-
Amplitude with noise removal&Phase with noise removal
-
Amplitude without noise removal&Phase without noise removal
另外使用另一个网络对如下数据集进行训练:
-
Amplitude with noise removal
-
Phase with noise removal
新网络的改进策略是讲原来的360统一换成180,切片长度和Units number不变,这样LSTM的输出维度就不变,这样CNN部分就不用修改。