-
Notifications
You must be signed in to change notification settings - Fork 63
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
178 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
from typing import Generator | ||
|
||
import pytest | ||
from colpali_engine.models import ColPali | ||
from colpali_engine.utils.torch_utils import get_torch_device, tear_down_torch | ||
|
||
from byaldi import RAGMultiModalModel | ||
from byaldi.colpali import ColPaliModel | ||
|
||
|
||
@pytest.fixture(scope="module") | ||
def colpali_rag_model() -> Generator[RAGMultiModalModel, None, None]: | ||
device = get_torch_device("auto") | ||
print(f"Using device: {device}") | ||
yield RAGMultiModalModel.from_pretrained("vidore/colpali-v1.2", device=device) | ||
tear_down_torch() | ||
|
||
|
||
@pytest.mark.slow | ||
def test_load_colpali_from_pretrained(colpali_rag_model: RAGMultiModalModel): | ||
assert isinstance(colpali_rag_model, RAGMultiModalModel) | ||
assert isinstance(colpali_rag_model.model, ColPaliModel) | ||
assert isinstance(colpali_rag_model.model.model, ColPali) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,153 @@ | ||
from pathlib import Path | ||
from typing import Generator | ||
|
||
import pytest | ||
from colpali_engine.utils.torch_utils import get_torch_device, tear_down_torch | ||
|
||
from byaldi import RAGMultiModalModel | ||
|
||
path_document_1 = Path("docs/attention.pdf") | ||
path_document_2 = Path("docs/attention_copy.pdf") | ||
|
||
|
||
@pytest.fixture(scope="function") | ||
def rag_model_from_pretrained() -> Generator[RAGMultiModalModel, None, None]: | ||
device = get_torch_device("auto") | ||
print(f"Using device: {device}") | ||
yield RAGMultiModalModel.from_pretrained("vidore/colpali-v1.2", device=device) | ||
tear_down_torch() | ||
|
||
|
||
@pytest.fixture(scope="function") | ||
def rag_model_from_index() -> Generator[RAGMultiModalModel, None, None]: | ||
yield RAGMultiModalModel.from_index("multi_doc_index") | ||
tear_down_torch() | ||
|
||
|
||
@pytest.mark.slow | ||
def test_single_pdf(rag_model_from_pretrained: RAGMultiModalModel): | ||
if not Path("docs/attention.pdf").is_file(): | ||
raise FileNotFoundError( | ||
f"Please download the PDF file from https://arxiv.org/pdf/1706.03762 and move it to {path_document_1}." | ||
) | ||
|
||
# Index a single PDF | ||
rag_model_from_pretrained.index( | ||
input_path="docs/attention.pdf", | ||
index_name="attention_index", | ||
store_collection_with_index=True, | ||
overwrite=True, | ||
) | ||
|
||
# Test retrieval | ||
queries = [ | ||
"How does the positional encoding thing work?", | ||
"what's the BLEU score of this new strange method?", | ||
] | ||
|
||
for query in queries: | ||
results = rag_model_from_pretrained.search(query, k=3) | ||
|
||
print(f"\nQuery: {query}") | ||
for result in results: | ||
print( | ||
f"Doc ID: {result.doc_id}, Page: {result.page_num}, Score: {result.score}" | ||
) | ||
|
||
# Check if the expected page (6 for positional encoding) is in the top results | ||
if "positional encoding" in query.lower(): | ||
assert any( | ||
r.page_num == 6 for r in results | ||
), "Expected page 6 for positional encoding query" | ||
|
||
# Check if the expected pages (8 and 9 for BLEU score) are in the top results | ||
if "bleu score" in query.lower(): | ||
assert any( | ||
r.page_num in [8, 9] for r in results | ||
), "Expected pages 8 or 9 for BLEU score query" | ||
|
||
|
||
@pytest.mark.slow | ||
def test_multi_document(rag_model_from_pretrained: RAGMultiModalModel): | ||
if not Path("docs/attention.pdf").is_file(): | ||
raise FileNotFoundError( | ||
f"Please download the PDF file from https://arxiv.org/pdf/1706.03762 and move it to {path_document_1}." | ||
) | ||
if not Path("docs/attention_copy.pdf").is_file(): | ||
raise FileNotFoundError( | ||
f"Please download the PDF file from https://arxiv.org/pdf/1706.03762 and move it to {path_document_2}." | ||
) | ||
|
||
# Index a directory of documents | ||
rag_model_from_pretrained.index( | ||
input_path="docs/", | ||
index_name="multi_doc_index", | ||
store_collection_with_index=True, | ||
overwrite=True, | ||
) | ||
|
||
# Test retrieval | ||
queries = [ | ||
"How does the positional encoding thing work?", | ||
"what's the BLEU score of this new strange method?", | ||
] | ||
|
||
for query in queries: | ||
results = rag_model_from_pretrained.search(query, k=5) | ||
|
||
print(f"\nQuery: {query}") | ||
for result in results: | ||
print( | ||
f"Doc ID: {result.doc_id}, Page: {result.page_num}, Score: {result.score}" | ||
) | ||
|
||
# Check if the expected page (6 for positional encoding) is in the top results | ||
if "positional encoding" in query.lower(): | ||
assert any( | ||
r.page_num == 6 for r in results | ||
), "Expected page 6 for positional encoding query" | ||
|
||
# Check if the expected pages (8 and 9 for BLEU score) are in the top results | ||
if "bleu score" in query.lower(): | ||
assert any( | ||
r.page_num in [8, 9] for r in results | ||
), "Expected pages 8 or 9 for BLEU score query" | ||
|
||
|
||
@pytest.mark.skip("This test should be made independent of the previous tests.") | ||
@pytest.mark.slow | ||
def test_add_to_index(rag_model_from_index: RAGMultiModalModel): | ||
# NOTE: This test should run after the test_multi_document test. | ||
|
||
# Add a new document to the index | ||
rag_model_from_index.add_to_index( | ||
input_item="docs/", | ||
store_collection_with_index=True, | ||
doc_id=[1002, 1003], | ||
metadata=[{"author": "John Doe", "year": 2023}] * 2, | ||
) | ||
|
||
# Test retrieval with the updated index | ||
queries = ["what's the BLEU score of this new strange method?"] | ||
|
||
for query in queries: | ||
results = rag_model_from_index.search(query, k=3) | ||
|
||
print(f"\nQuery: {query}") | ||
for result in results: | ||
print( | ||
f"Doc ID: {result.doc_id}, Page: {result.page_num}, Score: {result.score}" | ||
) | ||
print(f"Metadata: {result.metadata}") | ||
|
||
# Check if the expected page (6 for positional encoding) is in the top results | ||
if "positional encoding" in query.lower(): | ||
assert any( | ||
r.page_num == 6 for r in results | ||
), "Expected page 6 for positional encoding query" | ||
|
||
# Check if the expected pages (8 and 9 for BLEU score) are in the top results | ||
if "bleu score" in query.lower(): | ||
assert any( | ||
r.page_num in [8, 9] for r in results | ||
), "Expected pages 8 or 9 for BLEU score query" |