Skip to content
/ srcnn Public
forked from WarrenGreen/srcnn

Super Resolution for Satellite Imagery

Notifications You must be signed in to change notification settings

5AF1/srcnn

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

srcnn

Super Resolution for Satellite Imagery
Applying super resolution strategies to sattelite imagery

Based on: https://arxiv.org/pdf/1501.00092.pdf

Usage

Train:

For training, training imagery should be stored under <data_path>/images. These images will automatically be cropped and processed for training/testing. There is an example image already in this directory and an easy way to accumulate more is using Google Maps.

python srcnn.py --action train --data_path data

Evaluate: python srcnn.py --action test --data_path data --model_path models/weights2.h5

Run: python srcnn.py --action run --data_path data --model_path models/weights2.h5 --output_path model_results

About

Super Resolution for Satellite Imagery

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 99.8%
  • Python 0.2%