Skip to content

201210302/image_viewer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

40 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ”Ž Online Test Suite for Rendering

A web comparison tool for rendering research, forked from the online test suite by Disney Research.

Dependencies

Python

To install the latest version of all packages, run:

python3 -m pip install --user -r tools/requirements.txt

JavaScript

Docker

An alternative method to run this tool is to build the docker image:

docker build . -t interactive-viewer

Then, run the image in interactive mode to allow running python commands:

docker run --rm -it interactive-viewer bash

In order to keep everything persistent though, you should mount the repository folder onto the container:

docker run --rm -it -v `pwd`:/interactive-viewer interactive-viewer bash

Managing scenes

To add a new scene, simply run:

python3 tools/scene.py --root ./ add --name "Jewelry"

This creates a new scene directory with an index.html template, ready to be populated with data. Here, root represents the top directory. To remove a scene, run

python3 tools/scene.py --root ./ remove --name "Jewelry"

To see all scenes in the HTML index, run

python3 tools/scene.py --root ./ list

Using this script is not necessary as it is possible to copy and paste a scene and change its name manually.

Initializing a scene

To add a render, you first need to specify a reference and a base algorithm (e.g. path tracing), along with the metrics to be computed. For instance, this can be done by calling the following command:

python3 tools/analyze.py --ref Reference.exr \
                         --tests Path-Tracing.exr \
                         --names "Path Tracing" \
                         --dir scenes/jewelry/ \
                         --metrics mape mrse \
                         --partials pt_partial \
                         --epsilon 1e-2 \
                         --clip 0 1

The above computes the mean absolute percentage error (MAPE) and the mean relative square error (MRSE) between the reference and the test image. Both OpenEXR and HDR formats are supported. Below is a table of all arguments; run with --help for more info.

Parameter Description Requirement
ref Reference image Required
tests Test image(s) Required
dir Scene viewer directory Required
metrics Metric(s) to compute Required (Options: l1, l2, mape, smape, mrse, dssim)
partials Directory of partial renders (for convergence plots) Optional
names Test image(s) names Optional (Default: tests without extensions)
epsilon Epsilon when computing metric (avoids divison by zero) Optional (Default: 1e-2)
clip Pixel range for false color images Optional (Default: [0,1])
automatic Scene directory for automatic detection of files Optional
negpos Add negative/positive SMAPE colormap images Optional

By default, the algorithm name is the test file name, with - replaced with spaces. For instance, Path-Tracing.exr gets parsed as "Path Tracing": this is what it is referred to in the interactive viewer. If necessary, use --names to specify a more detailed name.

Behind the curtains, this script creates false color images and saves them as LDR (PNG) images in the scene directory. A thumbnail is also generated for the index. Most importantly, a data.js file is written to disk, which is then used by JS to display all images and metrics in the browser. This file can only be created by tools/analyze.py, which is why it has to be ran first before adding new renders.

Rendering a new image with Mitsuba

The script tools/render.py is used to render a new image with Mitsuba and add it to an existing scene viewer. It provides a way to iterate over a particular algorithm and immediately see how it compares against other previously computed images.

python3 tools/render.py --mitsuba ./mitsuba \
                        --ref scenes/jewelry/Reference.exr \
                        --scene ../mitsuba/scenes/jewelry/scene.xml \
                        --dir scenes/jewelry/ \
                        --name "My Algorithm" \
                        --alg "my-alg" \
                        --timeout 65 \
                        --frequency 60 \
                        --metrics mape mrse
Parameter Description Requirement
mitsuba Path to Mitsuba executable Required (Default: ./mitsuba)
ref Reference image Required
scene Mitsuba XML scene file Required
dir Scene viewer directory Required
name Full name of the algorithm Required
alg Mitsuba keyword for algorithm Required
metrics Metric(s) to compute Required (Options: l1, l2, mape, smape, mrse, dssim)
options Mitsuba options (e.g. -D var=value) Optional
timeout Terminate program after N seconds Optional
frequency Output intermediate image every N seconds Optional
epsilon Epsilon when computing metric (avoids divison by zero) Optional (Default: 1e-2)
clip Pixel range for false color images Optional (Default: [0,1])

Note that the scene file is assumed to have the following line in order to use different integrators. This is to ensure that the same geometry and light configuration is being rendered across algorithms.

<integrator type="$integrator"> 
    ...
</integrator>

If the render name already exists, the script overwrites its false color images and corresponding metrics. If not, it inserts it into the data.js dictionary.

Manually adding a rendered image

It is possible to manually add a rendered image to the scene viewer. The easiest solution is to add the image to the scene viewer directory and recompute the metrics over all images:

python3 tools/analyze.py --ref Reference.exr \
                         --tests pt.exr bdpt.exr pssmlt.exr \
                         --names "Path Tracing" "Bidirectional PT" "PSSMLT" \
                         --dir scenes/jewelry/ \
                         --metrics mape mrse \

Note that by doing so, you will overwrite previously added scenes rendered with Mitsuba. Run with the --automatic flag to let the script automatically detect partial render directories and reference.

πŸ“Š Standalone Metrics

A standalone script is provided to compute various metrics without an integration with JS. This is actually what is being used under the hood of previously discussed scripts.

Parameter Description Requirement
ref Reference image Required
test Test image Required
metrics Metric to compute Required (Options: l1, l2, mape, smape, mrse, dssim)
epsilon Epsilon when computing metric (avoids divison by zero) Optional (Default: 1e-2)
clip Pixel range for false color images Optional (Default: [0,1])
falsecolor False color heatmap output file Optional
colorbar Output heatmap with colorbar for PDF embedding Optional
plain Only output metric Optional

Examples

Metric and False Color

python3 tools/metric.py --ref Reference.exr \
                        --test Render-1.exr \
                        --metric mape \
                        --falsecolor MAPE.png
MAPE = 0.1164 (Min = 0.0000, Max = 9.1742, Var = 0.0141)
False color heatmap written to: MAPE.png

Metric and False Color + Colorbar (PDF)

python3 tools/metric.py --ref Reference.exr \
                        --test Render-1.exr \
                        --metric mape \
                        --falsecolor MAPE.png
                        --colorbar
MAPE = 0.1164 (Min = 0.0000, Max = 9.1742, Var = 0.0141)
False color heatmap written to: MAPE.png
False color heatmap (with colorbar) written to: MAPE.pdf

Only Metric

python3 tools/metric.py --ref Reference.exr \
                        --test Render-1.exr \
                        --metric mape \
                        --plain
0.116442

Outputs

Reference MAPE MAPE + Colorbar
Reference MAPE MAPE + Colorbar (PDF)

πŸ—’ TODOs

  • Track convergence over time
  • Make scripts more robust by handling exceptions
  • Handle different length plots and make sure stats are truthful

πŸ‘πŸ» Acknowledgments

About

TexSR result image viewer

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published