diff --git a/luminaire/model/window_density.py b/luminaire/model/window_density.py index d522edf..92f6ff5 100644 --- a/luminaire/model/window_density.py +++ b/luminaire/model/window_density.py @@ -157,8 +157,8 @@ def _distance_function(self, data=None, called_for=None, baseline=None): if called_for == "training": distance = [] for i in range(0, len(data) - 1): - q = stats.kde.gaussian_kde(data[i]) - p = stats.kde.gaussian_kde(data[i + 1]) + q = stats.gaussian_kde(data[i]) + p = stats.gaussian_kde(data[i + 1]) ts_min = min(np.min(data[i]), np.min(data[i + 1])) ts_max = max(np.max(data[i]), np.max(data[i + 1])) @@ -178,8 +178,8 @@ def _distance_function(self, data=None, called_for=None, baseline=None): # If called for scoring, Kl divergence is performed between the scoring window and the baseline elif called_for == "scoring": - q = stats.kde.gaussian_kde(baseline) - p = stats.kde.gaussian_kde(data) + q = stats.gaussian_kde(baseline) + p = stats.gaussian_kde(data) ts_min = min(np.min(baseline), np.min(data)) ts_max = max(np.max(baseline), np.max(data))