forked from AdrianPerezSalinas/universal_qlassifier
-
Notifications
You must be signed in to change notification settings - Fork 0
/
save_data.py
485 lines (417 loc) · 22 KB
/
save_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
##########################################################################
#Quantum classifier
#Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil, J. Ignacio Latorre
#Code by APS
#Code-checks by ACL
#June 3rd 2019
#Universitat de Barcelona / Barcelona Supercomputing Center/Institut de Ciències del Cosmos
###########################################################################
#This file provides useful tools for painting and saving data according to the problem,
# the minimization style, the number of qubits and layers.
import os
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.cm import get_cmap
from matplotlib.colors import Normalize
def write_summary(chi, problem, qubits, entanglement, layers, method, name,
theta, alpha, weights, chi_value, acc_train, acc_test, seed, epochs):
"""
This function takes some informations of a given problem and saves some text files
with this information and the parameters which are solution of the problem
INPUT:
-chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'
-problem: name of the problem, to choose between
['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy lines']
-qubits: number of qubits, must be an integer
-entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'
-layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account
-method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize]
-name: a name we want for our our files to be save with
-theta: set of parameters needed for the circuit. Must be an array with shape (qubits, layers, 3)
-alpha: set of parameters needed for the circuit. Must be an array with shape (qubits, layers, dimension of data)
-weight: set of parameters needed fot the circuit only if chi == 'weighted_fidelity_chi'. Must be an array with shape (classes, qubits)
-chi_value: Value of the cost function after minimization
-acc_train: accuracy for the training set
-acc_test: accuracy for the test set
-seed: seed of numpy.random, needed for replicating results
-epochs: number of epochs for a 'SGD' method. If there is another method, this input has got no importance
OUTPUT:
This function has got no outputs, but several files are saved in an appropiate folder. The files are
-summary.txt: Saves useful information for the problem
-theta.txt: saves the theta parameters as a flat array
-alpha.txt: saves the alpha parameters as a flat array
-weight.txt: saves the weights as a flat array if they exist
"""
foldname = name_folder(chi, problem, qubits, entanglement, layers, method)
create_folder(foldname)
file_text = open(foldname + '/' + name + '_summary.txt','w')
file_text.write('\nFigur of merit = '+chi)
file_text.write('\nProblem = ' + problem)
file_text.write('\nNumber of qubits = ' + str(qubits))
if qubits != 1:
file_text.write('\nEntanglement = ' + entanglement)
file_text.write('\nNumber of layers = ' + str(layers))
file_text.write('\nMinimization method = '+ method)
file_text.write('\nRandom seed = '+ str(seed))
if method == 'SGD':
file_text.write('\nNumber of epochs = '+ str(epochs))
file_text.write('\n\nBEST RESULT\n\n')
file_text.write('\nTHETA = \n')
file_text.write(str(theta))
file_text.write('\nALPHA = \n')
file_text.write(str(alpha))
if chi == 'weighted_fidelity_chi':
file_text.write('\nWEIGHTS = \n')
file_text.write(str(weights))
file_text.write('\nchi**2 = ' + str(chi_value))
file_text.write('\nacc_train = ' + str(acc_train))
file_text.write('\nacc_test = ' + str(acc_test))
file_text.close()
np.savetxt(foldname + '/' + name + '_theta.txt', theta.flatten())
np.savetxt(foldname + '/' + name + '_alpha.txt', alpha.flatten())
if chi == 'weighted_fidelity_chi':
np.savetxt(foldname + '/' + name + '_weight.txt', weights.flatten())
def read_summary(chi, problem, qubits, entanglement, layers, method, name):
"""
This function reads the files saved by write_summary and returns theta, alpha and weight parameters
INPUT:
-chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'
-problem: name of the problem, to choose among
['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy lines'
-qubits: number of qubits, must be an integer
-entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'
-layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account
-method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize]
-name: a name we want for our our files to be save with
OUTPUT:
-theta: set of parameters needed for the circuit. It is an array with shape (qubits, layers, 3)
-alpha: set of parameters needed for the circuit. It is an array with shape (qubits, layers, dimension of data)
-weight: set of parameters needed fot the circuit only if chi == 'weighted_fidelity_chi'. It is an array with shape (classes, qubits)
"""
chi = chi.lower().replace(' ','_')
if chi in ['fidelity', 'weighted_fidelity']: chi += '_chi'
if chi not in ['fidelity_chi', 'weighted_fidelity_chi']:
raise ValueError('Figure of merit is not valid')
if chi == 'fidelity_chi':
foldname = name_folder(chi, problem, qubits, entanglement, layers, method)
if problem in ['circle', '3 circles', 'wavy circles', 'wavy lines', 'non convex','crown','tricrown','squares']:
theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3))
dim = 2
elif problem == 'sphere':
theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3))
dim = 3
elif problem in ['hypersphere']:
theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 6))
dim = 4
alpha = np.loadtxt(foldname + '/' + name + '_alpha.txt').reshape((qubits, layers, dim))
return theta, alpha
if chi == 'weighted_fidelity_chi':
foldname = name_folder(chi, problem, qubits, entanglement, layers, method)
if problem in ['circle', '3 circles', 'wavy circles', 'wavy lines', 'non convex','crown','tricrown','squares']:
theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3))
dim = 2
elif problem == 'sphere':
theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3))
dim = 3
elif problem in ['hypersphere']:
theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 6))
dim = 4
alpha = np.loadtxt(foldname + '/' + name + '_alpha.txt').reshape((qubits, layers, dim))
if problem in ['3 circles','wavy lines','squares']:
weight = np.loadtxt(foldname + '/' + name + '_weight.txt').reshape((4, qubits))
if problem in ['circle','wavy circle','sphere', 'non convex', 'crown', 'hypersphere']:
weight = np.loadtxt(foldname + '/' + name + '_weight.txt').reshape((2, qubits))
if problem in ['tricrown']:
weight = np.loadtxt(foldname + '/' + name + '_weight.txt').reshape((3, qubits))
return theta, alpha, weight
def write_epochs_file(chi, problem, qubits, entanglement, layers, method, name):
"""
This function creates a text file for saving data only in the SGD_step_by_step function
INPUT:
-chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'
-problem: name of the problem, to choose among
['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy lines']
-qubits: number of qubits, must be an integer
-entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'
-layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account
-method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize]
-name: a name we want for our our files to be save with
OUTPUT:
-file_text: an object which is an open textfile ready to be used
"""
foldname = name_folder(chi, problem, qubits, entanglement, layers, method)
create_folder(foldname)
filename = foldname + '/' + name + '_epochs.txt'
file_text = open(filename,'w')
return file_text
def write_epoch(file_text, epoch, theta, alpha, chi_value, acc_train, acc_test):
"""
This function takes a text file and write information on it
INPUT:
-file_text: an object which is an open textfile ready to be used, output of write_epochs_file
-epoch: the number of epoch providing this information
-theta: set of parameters needed for the circuit. Must be an array with shape (qubits, layers, 3)
-alpha: set of parameters needed for the circuit. Must be an array with shape (qubits, layers, dimension of data)
-weight: set of parameters needed fot the circuit only if chi == 'weighted_fidelity_chi'. Must be an array with shape (classes, qubits)
-chi_value: Value of the cost function after minimization
-acc_train: accuracy for the training set
-acc_test: accuracy for the test set
OUTPUT:
-file_text: with more information on it
"""
file_text.write('\n Epoch = ' + str(epoch))
file_text.write('\nTHETA = \n')
file_text.write(str(theta))
file_text.write('\nALPHA = \n')
file_text.write(str(alpha))
file_text.write('\n chi**2 = \n')
file_text.write(str(chi_value))
file_text.write('\nacc_train = \n')
file_text.write(str(acc_train))
file_text.write('\nacc_test = \n')
file_text.write(str(acc_test))
def close_epochs_file(file_text, best_epoch):
"""
This function takes a text file and closes it
INPUT:
-file_text: an object which is an open textfile ready to be used, output of write_epochs_file after write_epoch
-best_epoch: the epoch with the best possible results
OUTPUT:
-file_text: closed
"""
file_text.write('\n\n\nBest epoch = ' + str(best_epoch))
file_text.close()
def write_epochs_error_rate(chi, problem, qubits, entanglement, layers, method, name,
accs_train, accs_test):
"""
This function takes information from the SGD_step_by_step function and saves the accuracies for training and test sets. It is required for studying the overlearning
INPUT:
-chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'
-problem: name of the problem, to choose among
['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy lines']
-qubits: number of qubits, must be an integer
-entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'
-layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account
-method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize]
-name: a name we want for our our files to be save with
-accs_train: list or array with the accuracies of the training set for all epochs
-accs_test: list or array with the accuracies of the test set for all epochs
OUTPUT:
Two files with the error rates in them
"""
foldname = name_folder(chi, problem, qubits, entanglement, layers, method)
create_folder(foldname)
filename_train = foldname + '/' + name + '_train.txt'
filename_test = foldname + '/' + name + '_test.txt'
np.savetxt(filename_train, 1 - np.array(accs_train))
np.savetxt(filename_test, 1 - np.array(accs_test))
def samples_paint(problem, settings, sol, foldname, filename, bw):
"""
This function takes the problem and the points when they are already classified, and saves a picture of them
INPUT:
-problem: name of the problem, to choose among
['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy lines']
-settings: parameters the function needs for drawing. Provided by problem_gen.problem_gen
-sol: solutions of the points alreafy classified
-foldname : name of the folder where we store results
-filename: name of the files we will produce
-bw: black and white, True/False
OUTPUT:
a file with the points and their classes, and whether they are right or wrong
"""
if bw == False:
colors_classes = get_cmap('plasma')
norm_class = Normalize(vmin=-.5,vmax=np.max(sol[:,-3]) + .5)
colors_rightwrong = get_cmap('RdYlGn')
norm_rightwrong = Normalize(vmin=-.1,vmax=1.1)
if bw == True:
colors_classes = get_cmap('Greys')
norm_class = Normalize(vmin=-.1,vmax=np.max(sol[:,-3]) + .1)
colors_rightwrong = get_cmap('Greys')
norm_rightwrong = Normalize(vmin=-.1,vmax=1.1)
fig, axs = plt.subplots(ncols = 2, figsize=(10,5))
ax = axs[0]
if problem in ['circle', '3 circles', 'crown', 'tricrown']:
centers, radii = settings
for c, r in zip(centers, radii):
ca = plt.Circle(c, r, color='k', fill=False, linewidth=2)
ax.add_artist(ca)
elif problem == 'wavy circle':
centers, radii, wave, freq = settings
phi = np.linspace(0, 2*np.pi, 1000)
for (c,r, w, f) in zip(centers, radii, wave, freq):
ax.plot(c[0] + r*(1 + w * np.cos(f * phi)) * np.cos(phi),
c[1] + r*(1 + w * np.cos(f * phi)) * np.sin(phi),
'k-')
elif problem == 'wavy lines':
freq = settings
s = np.linspace(-1,1,100)
ax.plot(s, np.clip(s + np.sin(freq * np.pi * s), -1, 1), 'k-')
ax.plot(s, -s + np.sin(freq * np.pi * s), 'k-')
elif problem == 'squares':
freq = settings
s = np.linspace(-1,1,10)
ax.plot(s, np.zeros(10), 'k-')
ax.plot(np.zeros(10), s, 'k-')
elif problem == 'non convex':
freq, x_val, sin_val = settings
s = np.linspace(-1,1,100)
ax.plot(s, np.clip(-x_val * s + sin_val * np.sin(freq * np.pi * s), -1, 1), 'k-')
ax.scatter(sol[:,0], sol[:,1], c=sol[:,-2], cmap = colors_classes, s=2, norm=norm_class)
ax.set_xlabel('x', fontsize=16)
ax.set_ylabel('y', fontsize=16)
ax.tick_params(axis='both',labelsize=16)
ax.set_xlim(-1, 1)
ax.set_ylim(-1, 1)
ax.margins(0)
ax.axis('equal')
bx = axs[1]
bx.scatter(sol[:,0], sol[:,1], c=sol[:,-1], cmap = colors_rightwrong, s=2, norm=norm_rightwrong)
if problem in ['circle', '3 circles', 'crown', 'tricrown']:
centers, radii = settings
for c, r in zip(centers, radii):
ca = plt.Circle(c, r, color='k', fill=False, linewidth=2)
bx.add_artist(ca)
elif problem == 'wavy circle':
centers, radii, wave, freq = settings
phi = np.linspace(0, 2*np.pi, 1000)
bx.plot(c[0] + r*(1 + wave * np.cos(freq * phi)) * np.cos(phi),
c[1] + r*(1 + wave * np.cos(freq * phi)) * np.sin(phi),
'k-')
elif problem == 'wavy lines':
freq = settings
s = np.linspace(-1,1,100)
bx.plot(s, np.clip(s + np.sin(freq * np.pi * s), -1, 1), 'k-')
bx.plot(s, -s + np.sin(freq * np.pi * s), 'k-')
elif problem == 'squares':
freq = settings
s = np.linspace(-1,1,10)
bx.plot(s, np.zeros(10), 'k-')
bx.plot(np.zeros(10), s, 'k-')
elif problem == 'non convex':
freq, x_val, sin_val = settings
s = np.linspace(-1,1,100)
bx.plot(s, np.clip(-x_val * s + sin_val * np.sin(freq * np.pi * s), -1, 1), 'k-')
bx.set_xlabel('x', fontsize=16)
bx.tick_params(axis='x', labelsize = 16)
bx.tick_params(axis='y', labelsize=0)
bx.set_xlim([-1, 1])
bx.set_ylim([-1, 1])
bx.margins(0)
bx.axis('equal')
fig.savefig(foldname + '/' + filename)
plt.close('all')
def laea_x(lamb, phi):
return 2*np.sqrt(2) * np.cos(phi)*np.sin(lamb / 2) / np.sqrt(1 + np.cos(phi)*np.cos(lamb/2))
def laea_y(lamb, phi):
return np.sqrt(2) * np.sin(phi) / np.sqrt(1 + np.cos(phi)*np.cos(lamb/2))
def samples_paint_worldmap(problem, settings, sol, foldname, filename, bw):
"""
This function takes the problem and the points when they are already classified, and saves a picture of them
INPUT:
-problem: name of the problem, to choose among
['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy lines']
-settings: parameters the function needs for drawing. Provided by problem_gen.problem_gen
-sol: solutions of the points alreafy classified
-foldname : name of the folder where we store results
-filename: name of the files we will produce
-bw: black and white, True/False
OUTPUT:
a file with the points and their classes, and whether they are right or wrong
"""
if bw == False:
colors_classes = get_cmap('plasma')
norm_class = Normalize(vmin=-.5,vmax=np.max(sol[:,-3]) + .5)
colors_rightwrong = get_cmap('RdYlGn')
norm_rightwrong = Normalize(vmin=-.1,vmax=1.1)
if bw == True:
colors_classes = get_cmap('Greys')
norm_class = Normalize(vmin=-.5,vmax=np.max(sol[:,-3]) + .5)
colors_rightwrong = get_cmap('Greys')
norm_rightwrong = Normalize(vmin=-.1,vmax=1.1)
fig, axs = plt.subplots(nrows = 3, figsize=(5,15))
line1 = _winkel_map((np.linspace(-np.pi,np.pi), np.zeros(50)))
line2 = _winkel_map((np.linspace(-np.pi,np.pi), np.ones(50)))
line3 = _winkel_map((np.linspace(-np.pi,np.pi), -np.ones(50)))
line4 = _winkel_map((np.zeros(50), np.linspace(-np.pi/2,.5*np.pi)))
line5 = _winkel_map((np.pi*np.ones(50), np.linspace(-np.pi/2,.5*np.pi)))
line6 = _winkel_map((-np.pi*np.ones(50), np.linspace(-np.pi/2,.5*np.pi)))
ax = axs[0]
ax.plot(line1[0], line1[1], 'k')
ax.plot(line2[0], line2[1], 'k')
ax.plot(line3[0], line3[1], 'k')
ax.plot(line4[0], line4[1], 'k')
ax.plot(line5[0], line5[1], 'k')
ax.plot(line6[0], line6[1], 'k')
X = np.empty((len(sol), 2))
for i,s in enumerate(sol):
mapped = _winkel_map(s[:2])
X[i] = mapped
ax.scatter(X[:,0], X[:,1], c=sol[:,-3], cmap = colors_classes, s=2, norm=norm_class)
#ax.set_xlabel('x', fontsize=16)
#ax.set_ylabel('y', fontsize=16)
#ax.tick_params(axis='both',labelsize=16)
#ax.set_xlim(-1, 1)
#ax.set_ylim(-1, 1)
#ax.margins(0)
#ax.axis('equal')
bx = axs[1]
bx.scatter(X[:,0], X[:,1], c=sol[:,-2], cmap = colors_classes, s=2, norm=norm_class)
cx = axs[2]
cx.scatter(X[:,0], X[:,1], c=sol[:,-1], cmap = colors_rightwrong, s=2, norm=norm_rightwrong)
#bx.set_xlabel('x', fontsize=16)
#bx.tick_params(axis='x', labelsize = 16)
#bx.tick_params(axis='y', labelsize=0)
#bx.set_xlim([-1, 1])
#bx.set_ylim([-1, 1])
#bx.margins(0)
#bx.axis('equal')
fig.savefig(foldname + '/' + filename + '_worldmap')
plt.close('all')
def _winkel_map(angles):
alpha = np.arccos(np.cos(angles[1])*np.cos(angles[0] / 2))
x = .5 * (angles[0] * 180 / np.pi + 2 * np.cos(angles[1] * np.sin(.5 * angles[0])) / np.sinc(alpha / np.pi))
y = .5 * (angles[1] * 180 / np.pi + np.sin(angles[1])/np.sinc(alpha/np.pi))
return np.array([x,y])
def create_folder(directory):
"""
Auxiliar function for creating directories with name directory
"""
try:
if not os.path.exists(directory):
os.makedirs(directory)
except OSError:
print ('Error: Creating directory. ' + directory)
def name_folder(chi, problem, qubits, entanglement, layers, method):
"""
This function takes information from the SGD_step_by_step function and saves the accuracies for training and test sets. It is required for studying the overlearning
INPUT:
-chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'
-problem: name of the problem, to choose among
['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy lines']
-qubits: number of qubits, must be an integer
-entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'
-layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account
-method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize]
-name: a name we want for our our files to be save with
-accs_train: list or array with the accuracies of the training set for all epochs
-accs_test: list or array with the accuracies of the test set for all epochs
OUTPUT:
-foldname: A name for a folder
"""
chi = chi.lower().replace(' ','_')
if chi in ['fidelity', 'weighted_fidelity']: chi += '_chi'
if chi not in ['fidelity_chi', 'weighted_fidelity_chi']:
raise ValueError('Figure of merit is not valid')
foldname = chi + '/'
problem = problem.replace(' ', '_')
foldname += problem + '/'
foldname += str(qubits) + '_qubits/'
if qubits != 1:
if entanglement.lower()[0] == 'y':
foldname += 'entangled/'
if entanglement.lower()[0] == 'n':
foldname += 'not_entangled/'
foldname += str(layers) + '_layers/'
foldname += method
return foldname