forked from AdrianPerezSalinas/universal_qlassifier
-
Notifications
You must be signed in to change notification settings - Fork 0
/
QuantumState.py
201 lines (177 loc) · 7.79 KB
/
QuantumState.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
##########################################################################
#Quantum classifier
#Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil, J. Ignacio Latorre
#Code by APS
#Code-checks by ACL
#June 3rd 2019
#Universitat de Barcelona / Barcelona Supercomputing Center/Institut de Ciències del Cosmos
###########################################################################
## This is an auxiliary file. It provides the tools needed for simulating quantum
# circuits.
import numpy as np
class QCircuit(object):
def __init__(self,qubits):
self.num_qubits = qubits
self.psi = [0]*2**self.num_qubits
self.psi[0] = 1
self.E_x=0
self.E_y=0
self.E_z=0
def Ry(self,i,theta):
if i>=self.num_qubits: raise ValueError('There are not enough qubits')
c = np.cos(theta/2)
s = np.sin(theta/2)
for k in range(2**(self.num_qubits-1)):
S = k%(2**i) + 2*(k - k%(2**i))
S_=S + 2**i
a=c*self.psi[S] - s*self.psi[S_];
b=s*self.psi[S] + c*self.psi[S_];
self.psi[S]=a; self.psi[S_]=b;
def Rx(self,i,theta):
if i>=self.num_qubits: raise ValueError('There are not enough qubits')
c = np.cos(theta/2)
s = np.sin(theta/2)
for k in range(2**(self.num_qubits-1)):
S = k%(2**i) + 2*(k - k%(2**i))
S_=S + 2**i
a=c*self.psi[S] - 1j*s*self.psi[S_];
b=-1j*s*self.psi[S] + c*self.psi[S_];
self.psi[S]=a; self.psi[S_]=b;
def U2(self,i,phi,lamb):
if i >= self.num_qubits: raise ValueError('There are not enough qubits')
f = np.exp(1j*phi)
l = np.exp(-1j*lamb)
for k in range(2**(self.num_qubits-1)):
S = k%(2**i) + 2*(k - k%(2**i))
S_=S + 2**i
a=1/np.sqrt(2)*(self.psi[S] - l*self.psi[S_]);
b=1/np.sqrt(2)*(f*self.psi[S] + f*l*self.psi[S_]);
self.psi[S]=a; self.psi[S_]=b;
def U3(self, i, theta3):
if i >= self.num_qubits: raise ValueError('There are not enough qubits')
c = np.cos(theta3[0] / 2)
s = np.sin(theta3[0] / 2)
e_phi = np.exp(1j * theta3[1] / 2)
e_phi_s = np.conj(e_phi)
e_lambda = np.exp(1j * theta3[2] / 2)
e_lambda_s = np.conj(e_lambda)
for k in range(2 ** (self.num_qubits - 1)):
S = k % (2 ** i) + 2 * (k - k % (2 ** i))
S_ = S + 2 ** i
a = c * e_phi * e_lambda * self.psi[S] - s * e_phi * e_lambda_s * self.psi[S_];
b = s * e_phi_s * e_lambda * self.psi[S] + c * e_phi_s * e_lambda_s * self.psi[S_];
self.psi[S] = a;
self.psi[S_] = b;
def Rz(self,i,theta):
if i>=self.num_qubits: raise ValueError('There are not enough qubits')
ex = np.exp(1j*theta)
for k in range(2**(self.num_qubits-1)):
S = k%(2**i) + 2*(k - k%(2**i)) + 2**i
self.psi[S]=ex*self.psi[S];
def Hx(self,i):
if i>=self.num_qubits: raise ValueError('There are not enough qubits')
for k in range(2**(self.num_qubits-1)):
S = k%(2**i) + 2*(k - k%(2**i))
S_=S + 2**i
a=1/np.sqrt(2)*self.psi[S] + 1/np.sqrt(2)*self.psi[S_];
b=1/np.sqrt(2)*self.psi[S] - 1/np.sqrt(2)*self.psi[S_];
self.psi[S] = a
self.psi[S_] = b
def Hy(self,i):
if i>=self.num_qubits: raise ValueError('There are not enough qubits')
for k in range(2**(self.num_qubits-1)):
S = k%(2**i) + 2*(k - k%(2**i))
S_=S + 2**i
a =1/np.sqrt(2)*self.psi[S] -1j/np.sqrt(2)*self.psi[S_];
b =-1j/np.sqrt(2)*self.psi[S] + 1/np.sqrt(2)*self.psi[S_];
self.psi[S] = a
self.psi[S_] = b
def HyT(self,i):
if i>=self.num_qubits: raise ValueError('There are not enough qubits')
for k in range(2**(self.num_qubits-1)):
S = k%(2**i) + 2*(k - k%(2**i))
S_=S + 2**i
a=1/np.sqrt(2)*self.psi[S] +1j/np.sqrt(2)*self.psi[S_];
b=1j/np.sqrt(2)*self.psi[S] + 1/np.sqrt(2)*self.psi[S_];
self.psi[S]=a; self.psi[S_]=b;
def Cz(self,i,j):
if i>=self.num_qubits: raise ValueError('There are not enough qubits')
if j>=self.num_qubits: raise ValueError('There are not enough qubits')
if i==j: raise ValueError('Control and target qubits are the same')
if j<i: a=i; i=j; j=a;
for k in range(2**(self.num_qubits-2)):
S = k%2**i + (
( k - k%2**i)*2)%2**j + 2*(
(k-k%2**i)*2-((2*(k-k%2**i))%2**j)) + 2**i + 2**j;
self.psi[S]=-self.psi[S]
def SWAP(self,i,j):
if i>=self.num_qubits: raise ValueError('There are not enough qubits')
if j>=self.num_qubits: raise ValueError('There are not enough qubits')
if i==j: raise ValueError('Control and target qubits are the same')
for k in range(2**(self.num_qubits-2)):
S = k%2**i + (
( k - k%2**i)*2)%2**j + 2*(
(k-k%2**i)*2-((2*(k-k%2**i))%2**j)) + 2**j;
S_ = S + 2**i - 2**j
a=self.psi[S_]
self.psi[S_] = self.psi[S]
self.psi[S] = a
def Cx(self,i,j):
#i = control
#j = target
if i>=self.num_qubits: raise ValueError('There are not enough qubits')
if j>=self.num_qubits: raise ValueError('There are not enough qubits')
if i==j: raise ValueError('Control and target qubits are the same')
for k in range(2**(self.num_qubits-2)):
S = k%2**i + (
( k - k%2**i)*2)%2**j + 2*(
(k-k%2**i)*2-((2*(k-k%2**i))%2**j)) + 2**i;
S_ = S + 2**j
'''
a=self.psi[S_]
self.psi[S_] = self.psi[S]
self.psi[S] = a
'''
self.psi[S],self.psi[S_] = self.psi[S_],self.psi[S]
def Cy(self,i,j):
if i>=self.num_qubits: raise ValueError('There are not enough qubits')
if j>=self.num_qubits: raise ValueError('There are not enough qubits')
if i==j: raise ValueError('Control and target qubits are the same')
for k in range(2**(self.num_qubits-2)):
S = k%2**i + (
( k - k%2**i)*2)%2**j + 2*(
(k-k%2**i)*2-((2*(k-k%2**i))%2**j)) + 2**i;
S_ = S + 2**j
self.psi[S],self.psi[S_] = 1j*self.psi[S_],-1j*self.psi[S]
def MeasureZ(self):
self.E_z = 0;
for h in range(2 ** self.num_qubits):
s = np.binary_repr(h, width=self.num_qubits)
self.E_z += np.abs(self.psi[h])**2*(s.count('1')-s.count('0'))
def MeasureX(self):
self.E_x = 0;
for i in range(self.num_qubits):
self.Hx(i);
for h in range(2 ** self.num_qubits):
s = np.binary_repr(h, width=self.num_qubits)
self.E_x += np.abs(self.psi[h])**2*(s.count('1')-s.count('0'))
for i in range(self.num_qubits):
self.Hx(i);
def MeasureY(self):
self.E_y = 0;
for i in range(self.num_qubits):
self.Hy(i);
for h in range(2 ** self.num_qubits):
s = np.binary_repr(h, width=self.num_qubits)
self.E_y += np.abs(self.psi[h])**2*(s.count('1')-s.count('0'))
for i in range(self.num_qubits):
self.HyT(i);
def reduced_density_matrix(self, q):
rho = np.zeros((2,2), dtype='complex')
for i in range(2):
for j in range(i + 1):
for k in range(2**(self.num_qubits-1)):
S = k%(2**q) + 2*(k - k%(2**q))
rho[i,j] += self.psi[S + i*2**q] * np.conj(self.psi[S + j*2**q])
rho[j,i] = np.conj(rho[i,j])
return rho