Skip to content

Latest commit

 

History

History
40 lines (28 loc) · 4.85 KB

internlm2_1.8b.md

File metadata and controls

40 lines (28 loc) · 4.85 KB

InternLM2-1.8B Model Card

Introduction

InternLM2-1.8B is the 1.8 billion parameter version of the second generation InternLM series. In order to facilitate user use and research, InternLM2-1.8B has three versions of open-source models. They are:

  • InternLM2-1.8B: Foundation models with high quality and high adaptation flexibility, which serve as a good starting point for downstream deep adaptations.
  • InternLM2-Chat-1.8B-SFT: Chat model after supervised fine-tuning (SFT) on InternLM2-1.8B.
  • InternLM2-Chat-1.8B: Further aligned on top of InternLM2-Chat-1.8B-SFT through online RLHF. InternLM2-Chat-1.8B exhibits better instruction following, chat experience, and function calling, which is recommended for downstream applications.

The base model of InternLM2 has the following technical features:

  • Effective support for ultra-long contexts of up to 200,000 characters: The model nearly perfectly achieves "finding a needle in a haystack" in long inputs of 200,000 characters. It also leads among open-source models in performance on long-text tasks such as LongBench and L-Eval.
  • Comprehensive performance enhancement: Compared to the previous generation model, it shows significant improvements in various capabilities, including reasoning, mathematics, and coding.

Model Zoo

Model Transformers(HF) ModelScope(HF) OpenXLab(HF) OpenXLab(Origin) Release Date
InternLM2-1.8B 🤗internlm2-1.8b internlm2-1.8b Open in OpenXLab Open in OpenXLab 2024-01-31
InternLM2-Chat-1.8B-SFT 🤗internlm2-chat-1.8b-sft internlm2-chat-1.8b-sft Open in OpenXLab Open in OpenXLab 2024-01-31
InternLM2-Chat-1.8B 🤗internlm2-chat-1.8b internlm2-chat-1.8b Open in OpenXLab Open in OpenXLab 2024-02-19

Performance Evaluation

We have evaluated InternLM2 on several important benchmarks using the open-source evaluation tool OpenCompass. Some of the evaluation results are shown in the table below. You are welcome to visit the OpenCompass Leaderboard for more evaluation results.

Dataset\Models InternLM2-1.8B InternLM2-Chat-1.8B-SFT InternLM2-Chat-1.8B InternLM2-7B InternLM2-Chat-7B
MMLU 46.9 47.1 44.1 65.8 63.7
AGIEval 33.4 38.8 34.6 49.9 47.2
BBH 37.5 35.2 34.3 65.0 61.2
GSM8K 31.2 39.7 34.3 70.8 70.7
MATH 5.6 11.8 10.7 20.2 23.0
HumanEval 25.0 32.9 29.3 43.3 59.8
MBPP(Sanitized) 22.2 23.2 27.0 51.8 51.4
  • The evaluation results were obtained from OpenCompass , and evaluation configuration can be found in the configuration files provided by OpenCompass.
  • The evaluation data may have numerical differences due to the version iteration of OpenCompass, so please refer to the latest evaluation results of OpenCompass.