-
Notifications
You must be signed in to change notification settings - Fork 0
/
HeatSink_HeatTransferModel.m
35 lines (29 loc) · 1.13 KB
/
HeatSink_HeatTransferModel.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
% Taken From https://www.sciencedirect.com/science/article/pii/S1359431122013096
% Assumptions: heat transfer to ambient environment is negligible, physical
% properties of the material(density, sp heat, thermal conductivity) are
% not affected by temperature.
% Chamber Parameters
At = 1; % throat area
Dt = (sqrt(At/pi)); %throat diameter
A = 1; % local cross sectional area
Pc = 1; % chamber pressure
cstar = 1;
R = 1; % throat radius of curvature
T0 = 1;
Tst = 1; % stagnation temp
mu = 1; % viscosity
delta = 1; % wall thickness [m]
cp = 1; % sp. heat capacity
lamda = 1; % thermal conduct coefficent of wall
dens = 1; %density of wall
Pr = 1; % Prandtl number
mu1 = 1; % eigenvalue
C = 0.026; % heat flow correction coefficent
Twg = 1;
sigma = ((Twg/(2*Tst))*(1+((gamma-1)/2*M*a^2))+0.5)^-0.68 * (1+(gamma-1)/2 *M*a^2)^-0.12;
hg = (C / Dt^0.2)*(mu^0.2*cp/Pr)*(Pc^0.8/cstar)*(Dt^0.1/R)*(At^0.9/A)*sigma;
dT = lamda/(dens*cp)*Twg; % 2.2 - needs to be reviewed/redone
Bi = hg*delta/lamda;
A1 = 2*(sin(mu1)/(mu1+sin(mu1)*cos(mu1)));
B1 = sin(mu1)/mu1;
q = (1-A1*(exp(-mu1^2*F0))*B1*dens*cp*delta*(T0-Tst));