In the following, we provide file structure, camera coordinate system, data generation details for two datasets: Replica, Tanks&Temple.
In all datasets, the camera coordinate system follows that in project: NeRF in PyTorch3D, which follows the PyTorch3D convention. The figure below illustrate the axis orientation in each coordinate system, please refer to PyTorch3D official document for configuration and usage details.
The Replica dataset is composed of several indoor scenes, and we generate data of 7 distint scenes for training and evaluation. First of all, we download Replica Dataset from the official repo
<scene>/<split> # split=train/valid
|- dense
|- points3D.txt # point cloud reconstructed from training views
|- images # RGB images
|- 00000.jpg
|- 00001.jpg
|- 00002.jpg
...
|- depth.npy # depth maps
|- R.npy # camera extrinsics: rotation
|- T.npy # camera extrinsics: translation
We download dataset from project NSVF
python dataset_convert.py --dataset_dir [directory of NSVF dataset] --output_dir [directory of converted dataset] --img_w [width] --img_h [height]
# example: python dataset_convert.py --dataset_dir TanksAndTemple/ --output_dir convert/TanksAndTemple --img_w 1920 --img_h 1080
<scene>/<split> # split=train/valid
|- images # RGB images
|- *.png
|- cameras.txt # Camera intrinsics: image size, focal length, principle point
|- points3D.npy # point cloud reconstructed from training views
|- R.npy # camera extrinsics: rotation
|- T.npy # camera extrinsics: translation
- The Replica Dataset: A Digital Replica of Indoor Spaces, in ArXiv, 2019
- BlenderProc, in ArXiv, 2019
- Structure-from-Motion Revisited, in CVPR, 2016
- Pixelwise View Selection for Unstructured Multi-View Stereo, in ECCV, 2016
- Neural Sparse Voxel Fields, in NeurIPS, 2020