forked from haofeixu/aanet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict.py
199 lines (155 loc) · 8.23 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch
import torch.nn.functional as F
import skimage.io
import argparse
import numpy as np
import os
import math
import nets
from dataloader import transforms
from utils import utils
from utils.file_io import write_pfm
from glob import glob
from utils.file_io import read_img
from numpy import savez_compressed
IMAGENET_MEAN = [0.485, 0.456, 0.406]
IMAGENET_STD = [0.229, 0.224, 0.225]
parser = argparse.ArgumentParser()
# Training data
parser.add_argument('--data_dir', default=None, required=True, type=str, help='Data directory for prediction')
parser.add_argument('--num_workers', default=0, type=int, help='Number of workers for data loading')
parser.add_argument('--img_height', default=544, type=int, help='Image height for inference')
parser.add_argument('--img_width', default=960, type=int, help='Image width for inference')
# Model
parser.add_argument('--seed', default=326, type=int, help='Random seed for reproducibility')
parser.add_argument('--output_dir', default=None, type=str,
help='Directory to save inference results')
parser.add_argument('--max_disp', default=192, type=int, help='Max disparity')
# AANet
parser.add_argument('--feature_type', default='aanet', type=str, help='Type of feature extractor')
parser.add_argument('--no_feature_mdconv', action='store_true', help='Whether to use mdconv for feature extraction')
parser.add_argument('--feature_pyramid', action='store_true', help='Use pyramid feature')
parser.add_argument('--feature_pyramid_network', action='store_true', help='Use FPN')
parser.add_argument('--feature_similarity', default='correlation', type=str,
help='Similarity measure for matching cost')
parser.add_argument('--num_downsample', default=2, type=int, help='Number of downsample layer for feature extraction')
parser.add_argument('--aggregation_type', default='adaptive', type=str, help='Type of cost aggregation')
parser.add_argument('--num_scales', default=3, type=int, help='Number of stages when using parallel aggregation')
parser.add_argument('--num_fusions', default=6, type=int, help='Number of multi-scale fusions when using parallel'
'aggragetion')
parser.add_argument('--num_stage_blocks', default=1, type=int, help='Number of deform blocks for ISA')
parser.add_argument('--num_deform_blocks', default=3, type=int, help='Number of DeformBlocks for aggregation')
parser.add_argument('--no_intermediate_supervision', action='store_true',
help='Whether to add intermediate supervision')
parser.add_argument('--deformable_groups', default=2, type=int, help='Number of deformable groups')
parser.add_argument('--mdconv_dilation', default=2, type=int, help='Dilation rate for deformable conv')
parser.add_argument('--refinement_type', default='stereodrnet', help='Type of refinement module')
parser.add_argument('--pretrained_aanet', default=None, type=str, help='Pretrained network')
parser.add_argument('--save_type', default='png', choices=['pfm', 'png', 'npy', 'npz'], help='Save file type')
parser.add_argument('--visualize', action='store_true', help='Visualize disparity map')
# Log
parser.add_argument('--save_suffix', default='pred', type=str, help='Suffix of save filename')
parser.add_argument('--save_dir', default='pred', type=str, help='Save prediction directory')
args = parser.parse_args()
args.output_dir = os.path.join(args.data_dir, args.save_dir)
utils.check_path(args.output_dir)
def main():
# For reproducibility
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
torch.backends.cudnn.benchmark = True
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Test loader
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)])
aanet = nets.AANet(args.max_disp,
num_downsample=args.num_downsample,
feature_type=args.feature_type,
no_feature_mdconv=args.no_feature_mdconv,
feature_pyramid=args.feature_pyramid,
feature_pyramid_network=args.feature_pyramid_network,
feature_similarity=args.feature_similarity,
aggregation_type=args.aggregation_type,
num_scales=args.num_scales,
num_fusions=args.num_fusions,
num_stage_blocks=args.num_stage_blocks,
num_deform_blocks=args.num_deform_blocks,
no_intermediate_supervision=args.no_intermediate_supervision,
refinement_type=args.refinement_type,
mdconv_dilation=args.mdconv_dilation,
deformable_groups=args.deformable_groups).to(device)
if os.path.exists(args.pretrained_aanet):
print('=> Loading pretrained AANet:', args.pretrained_aanet)
utils.load_pretrained_net(aanet, args.pretrained_aanet, no_strict=True)
else:
print('=> Using random initialization')
if torch.cuda.device_count() > 1:
print('=> Use %d GPUs' % torch.cuda.device_count())
aanet = torch.nn.DataParallel(aanet)
# Inference
aanet.eval()
if args.data_dir.endswith('/'):
args.data_dir = args.data_dir[:-1]
# all_samples = sorted(glob(args.data_dir + '/*left.png'))
all_samples = sorted(glob(args.data_dir + '/left/*.png'))
num_samples = len(all_samples)
print('=> %d samples found in the data dir' % num_samples)
for i, sample_name in enumerate(all_samples):
if i % 100 == 0:
print('=> Inferencing %d/%d' % (i, num_samples))
left_name = sample_name
right_name = left_name.replace('left', 'right')
left = read_img(left_name)
right = read_img(right_name)
sample = {'left': left,
'right': right}
sample = test_transform(sample) # to tensor and normalize
left = sample['left'].to(device) # [3, H, W]
left = left.unsqueeze(0) # [1, 3, H, W]
right = sample['right'].to(device)
right = right.unsqueeze(0)
# Pad
ori_height, ori_width = left.size()[2:]
# Automatic
factor = 48 if args.refinement_type != 'hourglass' else 96
args.img_height = math.ceil(ori_height / factor) * factor
args.img_width = math.ceil(ori_width / factor) * factor
if ori_height < args.img_height or ori_width < args.img_width:
top_pad = args.img_height - ori_height
right_pad = args.img_width - ori_width
# Pad size: (left_pad, right_pad, top_pad, bottom_pad)
left = F.pad(left, (0, right_pad, top_pad, 0))
right = F.pad(right, (0, right_pad, top_pad, 0))
with torch.no_grad():
pred_disp = aanet(left, right)[-1] # [B, H, W]
if pred_disp.size(-1) < left.size(-1):
pred_disp = pred_disp.unsqueeze(1) # [B, 1, H, W]
pred_disp = F.interpolate(pred_disp, (left.size(-2), left.size(-1)),
mode='bilinear') * (left.size(-1) / pred_disp.size(-1))
pred_disp = pred_disp.squeeze(1) # [B, H, W]
# Crop
if ori_height < args.img_height or ori_width < args.img_width:
if right_pad != 0:
pred_disp = pred_disp[:, top_pad:, :-right_pad]
else:
pred_disp = pred_disp[:, top_pad:]
disp = pred_disp[0].detach().cpu().numpy() # [H, W]
save_name = os.path.basename(left_name)[:-4] + '_' + args.save_suffix + '.png'
save_name = os.path.join(args.output_dir, save_name)
if args.save_type == 'pfm':
if args.visualize:
skimage.io.imsave(save_name, (disp * 256.).astype(np.uint16))
save_name = save_name[:-3] + 'pfm'
write_pfm(save_name, disp)
elif args.save_type == 'npy':
save_name = save_name[:-3] + 'npy'
np.save(save_name, disp)
elif args.save_type == 'npz':
save_name = save_name[:-3] + 'npz'
savez_compressed(save_name, disp)
else:
skimage.io.imsave(save_name, (disp * 256.).astype(np.uint16))
if __name__ == '__main__':
main()