forked from perlatex/R_for_Data_Science
-
Notifications
You must be signed in to change notification settings - Fork 0
/
reference_answer.Rmd
523 lines (393 loc) · 11.2 KB
/
reference_answer.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
# 参考答案 {#answers}
对于一个任务,R语言有很多种解决办法,因此这里给出的只是参考答案,欢迎大家提供更好的方案。
## 对象
```{r, eval=FALSE}
example <- c(1, 2, 3)
example1 <- c(1, 2, 3)
example.1 <- c(1, 2, 3)
example_1 <- c(1, 2, 3)
example-1 <- c(1, 2, 3) # 无效
example+1 <- c(1, 2, 3) # 无效
.example <- c(1, 2, 3)
.2example <- c(1, 2, 3) # 无效
2example <- c(1, 2, 3) # 无效
_example <- c(1, 2, 3)
```
## 向量
- 请说出fun3的结果
```{r, eval=FALSE}
c("Have", "fun", "programming", "in", "R")
```
- 数据类型必须一致是构建向量的基本要求,如果数值型、字符串型和逻辑型写在一起,用`c()`函数构成向量,猜猜会发生什么?
```{r, eval=FALSE}
c("1", "USA", "TRUE")
```
- 形容温度的文字, 要求转换成因子类型向量,并按照温度从高到低排序
```{r, eval=FALSE}
temp_factors <- factor(temperatures, ordered = TRUE, levels = c("cold", "warm", "hot"))
temp_factors
```
## 数据结构
- 为什么说数据框融合了向量、矩阵和列表的特性?
- 创建一个学生信息的data.frame,包含姓名、性别、年龄,成绩等变量
```{r, eval=FALSE}
df <- data.frame(
name = c("Alice", "Bob", "Carl", "Dave"),
age = c(23, 34, 23, 25),
score = c(80, 86, 79, 97),
sex = c("male", "female", "female", "male")
)
```
## 运算符与向量化运算
- 说出向量 a 和 b 的差异在什么地方?
```{r, eval=FALSE}
a <- 1:10
b <- seq(from = 1, to = 10, by = 1)
identical(a, b)
```
a 是整数型, b是双精度数值型
```{r, eval=FALSE}
is.integer(a)
is.integer(b)
```
## 函数
1. 根据方差的数学表达式,写出**方差**的计算函数,并与基础函数`var()`的结果对比
```{r, eval=FALSE}
varfun <- function(x) {
res <- sum((x - mean(x))^2) / (length(x) - 1)
return(res)
}
```
2. 自定义函数,它的作用是将输入的身高height(cm)与体重weight(kg)计算之后的BMI结果返回,BMI的计算公式为:
```{r, eval=FALSE}
get_bmi <- function(height, weight) {
height_m <- height / 100
return(weight / height_m^2)
}
get_bmi(175, 65)
```
3. 对于给定的向量 `vector`和阈值`threshold`,求出`vector`中所有大于该阈值的元素的均值
可以参考
```{r, eval=FALSE}
x <- 1:10
x[x > 5]
mean(x[x > 5])
```
```{r, eval=FALSE}
mean_above_threshod <- function(vector, threshold) {
x <- vector[vector > threshold]
mean(x, na.rm = TRUE)
}
mean_above_threshod(c(1:10), threshold = 5)
```
## 子集选取
1. 如何获取`matrix(1:9, nrow = 3)`上对角元? 对角元?
```{r, eval=FALSE}
m <- matrix(1:9, nrow = 3)
m
```
```{r, eval=FALSE}
diag(m)
upper.tri(m, diag = FALSE)
m[upper.tri(m, diag = FALSE)]
```
2. 对数据框,思考`df["x"]`, `df[["x"]]`, `df$x`三者的区别?
`df["x"]` 返回数据框;`df[["x"]]` 和`df$x`返回向量
3. 如果`x`是一个矩阵,请问 `x[] <- 0` 和`x <- 0` 有什么区别?
`x[] <- 0` 让矩阵的矩阵元都0;而`x <- 0` 让x这个对象变成向量,不再是矩阵了
4. 不添加参数`na.rm = TRUE`的前提下,用`sum()`计算向量`x`的元素之和
```{r, eval=FALSE}
x <- c(3, 5, NA, 2, NA)
x_missing <- is.na(x)
x_missing
x[x_missing] <- 0
x
sum(x)
```
5. 找出`x`向量中的偶数
```{r, eval=FALSE}
x <- 1:10
x[x %% 2 == 0]
```
## 读取数据
- 说出数据框中每一列的变量类型
```{r, eval=FALSE}
library(dplyr)
kidiq <- readr::read_rds("./data/kidiq.RDS")
kidiq
kidiq %>%
glimpse()
```
## 数据处理
1、总结 dplyr 系列函数的三个特征。
- 函数第一个参数接受数据框
- 数据框进数据框出
- 创建新变量的“新旧原则”,等号左边是新的列名,等号右边是基于原变量的统计
2、用本章中的数据框`df`运行以下代码,然后理解代码含义。
```{r, eval=FALSE}
df %>%
filter(score > mean(score))
```
筛选出成绩高于均值的所有记录
3、 统计每位同学成绩高于75分的科目数
```{r eval=FALSE}
df %>%
group_by(name) %>%
mutate(num_of_bigger_than_75 = sum(score >75))
```
4、运行以下代码,比较差异在什么地方。
```{r, eval=FALSE}
df %>%
group_by(name) %>%
summarise(mean_score = mean(score))
```
汇总成新的数据框
```{r, eval=FALSE}
df %>%
group_by(name) %>%
mutate(mean_score = mean(score))
```
在原数据框的基础上增加新的一列
5、排序,要求按照score从大往小排,但希望all是最下面一行。
```{r, eval=FALSE}
d <-
tibble::tribble(
~name, ~score,
"a1", 2,
"a2", 5,
"a3", 3,
"a4", 7,
"a5", 6,
"all", 23
)
d %>%
arrange(desc(score)) %>%
arrange(name %in% c("all"))
```
## 正则表达式
- 找出所有单词中,元音重复两次的单词,比如`good`, `see`
```{r, eval=FALSE}
library(tidyverse)
library(words) # install.packages("word")
words %>%
as_tibble() %>%
filter(
str_detect(word, "([aeiou])\\1")
)
```
- 检查每行是否包含1,这里指的是单独的1,不包括11, 10这种。
```{r, eval=FALSE}
dat <- data.frame(
teachcert = c("", "1", "1,11", "1,11,8", "1,3", "10,2,6", "2", "2,1"),
n = rnorm(8)
)
dat
```
```{r, eval=FALSE}
# way 1
dat %>%
mutate(elem_cert =
if_else(str_detect(teachcert, "\\b1\\b"), 1, 0)
)
# way 2
dat %>%
mutate(elem_cert =
if_else(str_detect(teachcert, "(^|,)1(,|$)"), 1, 0)
)
# way 3
dat %>%
mutate(elem_cert =
if_else(str_detect(teachcert, "^1,|,1,|,1$|^1$"), 1, 0)
)
# way 4
dat %>%
mutate(elem_cert =
as.numeric(str_detect(teachcert, "^1,|,1,|,1$|^1$"))
)
# way 5 最骚
dat %>%
mutate(teachcert_lgl = map_lgl(str_split(teachcert, ","), ~ "1" %in% .x))
dat %>%
mutate(elem_cert = as.numeric(map_lgl(str_split(teachcert, ","), ~ "1" %in% .x)))
```
## 因子型变量
- 画出的2007年美洲人口寿命的柱状图,要求从高到低排序
```{r eval= FALSE}
library(gapminder)
gapminder %>%
filter( year == 2007, continent == "Americas") %>%
mutate( country = fct_reorder(country, lifeExp)) %>%
ggplot(aes(lifeExp, country)) +
geom_point()
```
- 这是四个国家人口寿命的变化图
```{r eval= FALSE}
gapminder %>%
filter(country %in% c("Norway", "Portugal", "Spain", "Austria")) %>%
ggplot(aes(year, lifeExp)) + geom_line() +
facet_wrap(vars(country), nrow = 1)
```
- 要求给四个分面排序,按每个国家寿命的中位数
```{r eval= FALSE}
gapminder %>%
filter(country %in% c("Norway", "Portugal", "Spain", "Austria")) %>%
mutate(country = fct_reorder(country, lifeExp)) %>% # default: order by median
ggplot(aes(year, lifeExp)) + geom_line() +
facet_wrap(vars(country), nrow = 1)
```
- 要求给四个分面排序,按每个国家寿命差(最大值减去最小值)
```{r eval= FALSE}
gapminder %>%
filter(country %in% c("Norway", "Portugal", "Spain", "Austria")) %>%
mutate(country = fct_reorder(country, lifeExp, function(x) { max(x) - min(x) })) %>%
ggplot(aes(year, lifeExp)) + geom_line() +
facet_wrap(vars(country), nrow = 1)
```
## 标度
用 ggplot2 重复这张lego图
```{reval=FALSE}
df <- tibble(
color = c("green", "white", "pink", "yellow", "blue", "light green", "orange"),
count = c(6, 5, 4, 3, 2, 2, 1)
)
df %>%
mutate(
across(color, as_factor)
) %>%
ggplot(aes(x = color, y = count, fill =color)) +
geom_col() +
scale_fill_manual(
values = c("#70961c", "white", "#ee5e4f", "#d5c47c", "#008db3", "#a5d395", "#d35800")
) +
theme(
legend.position = "none",
panel.background = element_rect(
fill = "#d7d3c9",
colour = "#d7d3c9",
size = 0.5,
linetype = "solid"
)
) +
labs(x = NULL, y = NULL)
```
## 主题风格
让老板满意
```{r, eval=FALSE}
library(tidyverse)
set.seed(12)
d1 <- data.frame(x = rnorm(50, 10, 2), type = "Island #1")
d2 <- data.frame(x = rnorm(50, 18, 1.2), type = "Island #2")
dd <- bind_rows(d1, d2) %>%
set_names(c("Height", "Location"))
head(dd)
```
```{r, eval=FALSE}
ggplot(data = dd, aes(x = Height, fill = Location)) +
geom_histogram(binwidth = 1, color = "white") +
scale_fill_manual(values = c("green3", "turquoise3")) +
theme_light() +
scale_y_continuous(expand = c(0, 0)) +
labs(x = "Teacup Giraffe heights", y = "Frequency", fill = NULL) +
theme(panel.border = element_blank(),
panel.grid.minor = element_blank(),
legend.position = "top",
legend.justification='left',
legend.background = element_rect(color = "white")
)
```
## ggplot2之扩展内容
- 重复这张压平曲线(flatten curve)图
方法1
```{r, eval=FALSE}
library(tidyverse)
high <- rnorm(1e5, mean = 12, sd = 4)
flat <- rnorm(1e5, mean = 35, sd = 12)
df <- tibble(
dist = c(rep("high", 1e5), rep("flat", 1e5)),
x = c(high, flat)
)
df %>%
ggplot(aes(x = x, color = dist)) +
geom_density() +
scale_y_continuous(expand = expansion(mult = c(0, NA))) +
scale_color_manual(
name = "distribution",
values = c("high" = "tomato", "flat" = "dodgerblue"),
labels = c("high" = "distribution1", "flat" = "distribution2")
) +
theme_minimal() +
labs(x = "Days since the first case",
title = "Slow Down the Spread of COVID-19",
subtitle = "Practicing Social distancing can slow the spread of disease, which can prevent the overcrowding of hospitals")
```
方法2
```{r, eval=FALSE}
ggplot() +
stat_function(fun = dnorm,
args = list(mean = 12, sd = 4),
color = "red"
) +
stat_function(fun = dnorm,
args = list(mean = 35, sd = 12),
color = "dodgerblue"
) +
xlim(-5, 90)
```
## tidyverse中的若干技巧
- 新建一列ratio,当sign为"positive"时,ratio等于 A除以B,当sign为"negative"时,ratio等于 B除以A
```{r, eval=FALSE}
tb <- tibble::tribble(
~A, ~B, ~sign,
100L, 50L, "positive",
50L, 100L, "negative",
100L, 50L, "positive",
50L, 100L, "negative"
)
tb %>%
mutate(
ratio = if_else(sign == "positive", A / B, B / A)
)
```
```{r, eval=FALSE}
# or
tb %>%
mutate(
ratio = case_when(
sign == "positive" ~ A / B,
TRUE ~ B / A
)
)
```
- 用`:`分隔y列,并且只要前4个,构成新的数据框
```{r, eval=FALSE}
df <- tibble(
x = 1:2,
y = c("A1:A2:A3:A4:A5:A6", "B1:B2:B3:B4:B5:B6")
)
df %>%
separate(y, sep = ":", into = c("e1", "e2", "e3", "e4", "e5", "e6"), remove = FALSE) %>%
select(1:6)
```
## 模型输出结果的规整
```{r,eval=FALSE}
df <- tibble(
x = runif(30, 2, 10),
y = -2*x + rnorm(30, 0, 5)
)
fitted_lm <- lm(y ~ x, data = df)
fitted_lm %>%
broom::augment() %>%
select(x, y, predicted = .fitted, residuals = .resid) %>%
ggplot(aes(x = x, y = y)) +
geom_smooth(method = "lm", se = FALSE, color = "gray50") +
geom_segment(aes(xend= x, yend = predicted), alpha = 0.2) +
geom_point(aes(size = abs(residuals), color = abs(residuals))) +
scale_color_continuous(low = "grey", high = "#FFB612", aesthetics = c("fill", "color")) +
theme(panel.grid.minor = element_blank(),
panel.grid.major = element_line(color = "gray"),
panel.background = element_rect(fill = "#f0f0f0", color = NA),
plot.background = element_rect(fill = "#f0f0f0", color = NA),
axis.ticks = element_blank(),
legend.position = "none"
)
```