forked from perlatex/R_for_Data_Science
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eda_practice.rmd
1104 lines (839 loc) · 22.7 KB
/
eda_practice.rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# 一天一练 {#eda-practice}
> “表达我自己比被人喜欢更重要。” 加油
尽可能的在tidyverse的框架下完成
```{r practice00}
library(tidyverse)
```
## day01
旋转数据框,要求
```{r practice01}
d <- tibble::tribble(
~name, ~chinese, ~math, ~physics, ~english, ~music, ~sport,
"Alice", 88L, 63L, 98L, 89L, 85L, 72L,
"Bob", 85L, 75L, 85L, 82L, 73L, 83L,
"Carlo", 95L, 98L, 75L, 75L, 68L, 84L
)
d
```
变成
```{r practice02, echo = FALSE}
d %>%
tidyr::pivot_longer(
cols = -name,
names_to = "discipline",
values_to = "score"
) %>%
tidyr::pivot_wider(
names_from = name,
values_from = score
)
```
## day02
排序,要求按照score从大往小排,但希望all是最下面一行。
```{r practice03}
d <-
tibble::tribble(
~name, ~score,
"a1", 2,
"a2", 5,
"a3", 3,
"a4", 7,
"a5", 6,
"all", 23
)
```
变成
```{r practice04, echo = FALSE}
d %>%
arrange(desc(score)) %>%
arrange(name %in% c("all"))
```
## day03
统计每位同学,成绩高于各科均值的个数,
```{r practice05}
d <- tibble::tribble(
~name, ~chinese, ~engish, ~physics, ~sport, ~music,
"Aice", 85, 56, 56, 54, 78,
"Bob", 75, 78, 77, 56, 69,
"Cake", 69, 41, 88, 89, 59,
"Dave", 90, 66, 74, 82, 60,
"Eve", 68, 85, 75, 69, 21,
"Fod", 77, 74, 62, 74, 88,
"Gimme", 56, 88, 75, 69, 34
)
d
```
变成
```{r practice06, echo = FALSE}
d %>%
mutate(
across(-name, list(RC = ~ . > mean(.)))
) %>%
rowwise() %>%
mutate(
num_above_mean = sum(c_across(ends_with("_RC")))
) %>%
ungroup() %>%
select(-ends_with("_RC"))
```
## day04
```{r practice07}
data <- tribble(
~id, ~corr, ~period,
1, 0, "a",
1, 0, "b",
2, 0, "a",
2, 1, "b",
3, 1, "a",
3, 0, "b",
4, 1, "a",
4, 1, "b"
)
data
```
先按id分组,
- 如果corr中都是0 就"none"
- 如果corr中都是1 就"both"
- 如果corr中只有一个1,就输出1对应period
```{r practice08, echo = FALSE}
my_function <- function(corr, period) {
sum <- sum(corr)
if (sum == 0) {
res <- "none"
}
if (sum == 2) {
res <- "both"
}
if (sum == 1) {
res <- period[corr == 1]
}
return(res)
}
data %>%
group_by(id) %>%
summarise(resp_period = my_function(corr, period))
```
## day05
图中柱子上的字体没有显示完整,请改进。
```{r practice09}
d <- tibble::tribble(
~name, ~value,
"Alice", 2.12,
"Bob", 68.45,
"Carlie", 15.84,
"Dave", 7.38,
"Eve", 0.56
)
d %>%
ggplot(aes(x = value, y = fct_reorder(name, value)) ) +
geom_col(width = 0.6, fill = "gray60") +
geom_text(aes(label = value, hjust =1)) +
theme_classic() +
scale_x_continuous(expand = c(0, 0)) +
labs(x = NULL, y = NULL)
```
```{r practice10, eval=FALSE, echo = FALSE}
d %>%
ggplot(aes(x = value, y = fct_reorder(name, value)) ) +
geom_col(width = 0.6, fill = "gray60") +
geom_text(aes(label = value, hjust = ifelse(value > 50, 1, -.1)) ) +
theme_classic() +
scale_x_continuous(expand = c(0, 0)) +
labs(x = NULL, y = NULL)
```
## day06
我看到新闻有[一张图](https://themarkup.org/news/2021/03/02/major-universities-are-using-race-as-a-high-impact-predictor-of-student-success)很漂亮,您能重复出来?
```{r practice11, out.width = '85%', echo = FALSE}
knitr::include_graphics("images/to_reproduce.jpg")
```
数据在下面
```{r practice12}
d <- tibble::tribble(
~area, ~group, ~value,
"Texas A&M", "white Students", 0.03,
"Texas A&M", "Black Students", 0.07,
"Umass Amherst", "white Students", 0.07,
"Umass Amherst", "Black Students", 0.23,
"UW-Milwaukee", "white Students", 0.13,
"UW-Milwaukee", "Black Students", 0.31
)
d
```
提示,可以把图片拉到https://color.adobe.com/zh/create/image-gradient 获取颜色值,比如
```{r practice13}
colorspace::swatchplot(c("#F42F5D","#252A4A"))
```
```{r practice14, eval=FALSE, echo = FALSE}
## 图片拉到https://color.adobe.com/zh/create/image-gradient 获取颜色值
colorspace::swatchplot(c("#F42F5D","#FC3762","#252A4A","#242B48"))
colorspace::swatchplot(c("#F42F5D","#252A4A"))
## a stupid way
text_subtitle <- glue::glue("<span style = 'font-size:13pt; '>Percentage of student body labeled as high risk to not graduate within their <br> selected major</span><br>",
"<span style = 'color:#F42F5D; '>",
str_dup("-", 100),
"</span>"
)
d %>%
mutate(
across(group, as_factor),
) %>%
ggplot(aes(x = group, y = value, color = group, fill = group)) +
geom_col(width = 0.4) +
geom_text(aes(label = scales::label_percent(scale = 100, accuracy = 1)(value)),
vjust = -1,
size = rel(6),
fontface = "bold"
) +
facet_wrap(vars(area), ncol = 3, scales = "free_y") +
scale_x_discrete(
labels = function(x) str_replace(x, " ", "\n"),
expand = expansion(mult = .8)
) +
scale_y_continuous(
limits = c(0, 0.46),
breaks = c(0, 0.2, 0.4),
labels = scales::label_percent(scale = 100, accuracy = 1),
expand = expansion(mult = 0)
) +
scale_fill_manual(
values = c("white Students" = "#252A4A", "Black Students" = "#F42F5D"),
aesthetics = c("colour", "fill")
) +
theme(
legend.position = "none",
plot.title = element_text(size = rel(2)),
plot.subtitle = element_markdown(size = 11 ),
plot.caption = element_text(size = 12, color = "grey50", hjust = 0),
axis.text.y = element_text(size = rel(1.5)),
axis.text.x = element_text(size = rel(1.5),
face = "bold",
color = c("#252A4A", "#F42F5D")#,
#margin = margin(t = -5, unit = "pt")
),
axis.ticks = element_blank(),
panel.background = element_rect(color = "white", fill = NA),
panel.grid.major.y = element_line(colour = "gray",
size = 0.8,
linetype = "dotted"),
strip.background = element_blank(),
strip.text = element_text(face = "bold", size = rel(1)),
panel.spacing = unit(2, "lines")
) +
labs(
title = "Black students are regularly labeled a higher risk for failure\nthan White students",
subtitle = text_subtitle,
caption = "Sources: Texas A&M, University of Massachusetts Amherst, and University of Wisconsin–\nMilwaukee",
x = NULL, y = NULL)
ggsave("myplot.pdf", width = 10, height = 5, units = "in")
```
## day07
告诉你一个你可能不知道的事情,`summarise()`一定要输出数据框吗?
```{r practice15, eval=FALSE, echo=TRUE}
iris %>%
nest_by(Species) %>%
rowwise() %>%
summarise(
write_csv(data, glue("{Species}.cvs"))
)
```
## day08
运行以下两个代码,结果和你期望的一样?为什么?
```{r practice16, eval=FALSE, echo=TRUE}
mtcars %>%
group_by(cyl) %>%
summarise(
broom::tidy(lm(mpg ~ wt, data = .))
)
mtcars %>%
group_by(cyl) %>%
summarise(
broom::tidy(lm(mpg ~ wt))
)
```
```{r practice17, eval=FALSE, echo=FALSE}
# 答案,以上两段代码,分别等价于
mtcars %>%
group_by(cyl) %>%
summarise(
broom::tidy(lm(mpg ~ wt, data = mtcars))
)
mtcars %>%
group_by(cyl) %>%
summarise(
broom::tidy(lm(mpg ~ wt, data = cur_data()))
)
```
## day09
缺失值替换,数值型的缺失值用0替换,字符串型的用""
```{r practice18, eval=FALSE, echo=TRUE}
df <- tibble(
x = c(NA, 1, 2),
y = c("a", NA, NA),
)
```
```{r practice19, eval=FALSE, echo=FALSE}
df %>% mutate(
across(is.numeric, coalesce, 0),
across(is.character, coalesce, "")
)
```
## day10
六年级的年级主任让学生提交自己所在的班级号,看到结果后,他很苦恼,你能帮忙他规整下?
```{r practice20}
d <- tibble::tribble(
~id,
"2",
"03",
"小学2015级2班",
"小学2015级3班",
"0601",
"0602",
"201502",
"201604",
"6.10",
"6.11",
"6.5",
"6.8",
"06"
)
d
```
```{r practice21, eval=FALSE, echo=FALSE}
parse_class_id <- function(x) {
res <- NA_character_
if ( stringr::str_length(x) < 3 ) {
res <- x
}
if ( stringr::str_detect(x, "班$") ) {
res <- stringr::str_extract(x, "\\d+(?=班)")
}
if ( stringr::str_detect(x, "\\.") ) {
res <- stringr::str_extract(x, "(?<=\\.)\\d+")
}
if ( stringr::str_detect(x, "\\d{6}$") ) {
res <- stringr::str_extract(x, "\\d{2}$")
}
if ( stringr::str_detect(x, "\\d{4}$") ) {
res <- stringr::str_extract(x, "\\d{2}$")
}
res <- stringr::str_pad(res, width = 2, side = "left", pad = "0")
return(res)
}
d %>% mutate(
x = map_chr(id, ~parse_class_id(.))
)
```
## day11
每行以x为均值生成一个随机数, 以下哪个是正确的?
```{r practice22, eval=FALSE, echo=TRUE}
# A
tibble(x = 1:5) %>%
mutate(normal_mean = rnorm(1, mean = x))
# B
tibble(x = 1:5) %>%
mutate(normal_mean = rnorm(n(), mean = x))
# C
tibble(x = 1:5) %>%
mutate(normal_mean = map_dbl(x, ~rnorm(1, mean = .)))
# D
tibble(x = 1:5) %>%
mutate(normal_mean = map_dbl(x, ~rnorm(1), mean = .))
# E
tibble(x = 1:5) %>%
rowwise() %>%
mutate(normal_mean = rnorm(1, mean = x))
```
## day12
`purrr::map()`的辅助参数放里面和放外面,有什么区别?
```{r practice23, eval=FALSE, echo=TRUE}
x <- rep(0, 3)
plus <- function(x, y) x + y
map_dbl(x, plus, runif(1))
map_dbl(x, ~plus(.x, runif(1)) )
```
## day13
计算每天水分和食物的所占比例, 比如第一天water和food都是10.0,那么各自比例都是50%.
```{r practice24}
d <- tibble::tribble(
~water, ~food,
10.0, 10.0,
12.1, 10.3,
13.5, 19.1,
17.4, 16.0,
25.8, 15.6,
27.4, 19.8
)
d
```
```{r practice25, eval=FALSE, echo=FALSE}
d %>%
rowwise() %>%
mutate(100 * across(.names = "%{.col}") / sum(c_across())) %>%
ungroup()
# or
scale <- function(x) {
100 * x / sum(x, na.rm = TRUE)
}
d %>%
rowwise() %>%
mutate(
scale(across(.names = "%{.col}"))
)
```
## day14
以下代码哪些会给出相同的图形?
```{r, eval=FALSE}
tb <- tibble(
x = rep(c(1,2,3), 2),
y = c(1:6),
group = c(rep("group1", 3), rep("group2", 3) )
)
```
1. `ggplot(tb, aes(x,y)) + geom_line()`
2. `ggplot(tb, aes(x,y,group=group)) + geom_line()`
3. `ggplot(tb, aes(x,y,fill=group)) + geom_line()`
4. `ggplot(tb, aes(x,y,color=group)) + geom_line()`
## day15
重复这张图
```{r, out.width = '85%', echo = FALSE}
knitr::include_graphics(here::here("images","to_reproduce2.png"))
```
数据在下面
```{r}
library(tidyverse)
raw_df <- read_rds(here::here("demo_data", "rude_behavior_in_airplane.rds"))
raw_df
```
```{r, eval=FALSE, echo=FALSE}
df <- raw_df %>%
group_by(type) %>%
mutate(
percent = n / sum(n)
) %>%
ungroup() %>%
mutate(
percent = if_else(str_detect(judgment, "Not"), -1 * percent, percent)
)
df
```
```{r, eval=FALSE, echo=FALSE}
df_no <- df %>%
filter(judgment == "Not rude")
df_yes <- df %>%
filter(judgment != "Not rude")
Somewhat_rude <- df_yes %>%
filter(judgment == "Somewhat rude")
Very_Rude <- df_yes %>%
filter(judgment == "Very Rude")
```
```{r, eval=FALSE, echo=FALSE}
ggplot() +
geom_col(data = df_no, aes(x = percent, y = fct_reorder(type, percent), fill = judgment)) +
geom_col(data = df_yes, aes(x = percent, y = type, fill = fct_rev(judgment))) +
geom_vline(xintercept = 0, color = "black", linetype = "dashed") +
geom_text(
data = df_no, aes(x = percent/2, y = type, label = paste0(abs(round(100*percent)), "%"))
) +
geom_text(
data = Somewhat_rude, aes(x = percent/2, y = type, label = paste0(abs(round(100*percent)), "%"))
) +
geom_text(
data = Very_Rude,
aes(x = Somewhat_rude$percent + percent/2, y = type,
label = paste0(abs(round(100*percent)), "%")),
hjust = ifelse(Very_Rude$percent > 0.05, 0.5, -.4)
) +
scale_fill_manual(
values = c("Not rude" = "#F2B138", "Very Rude" = "#32A685", "Somewhat rude" = "#77C2EA")
) +
theme_minimal() +
theme(
legend.position = "bottom",
plot.title.position = "plot",
axis.text.x = element_blank(),
axis.text.y = element_text(face = c("bold", "plain", "bold", "plain", 'bold', 'plain', 'bold', 'plain', 'bold'))
) +
labs(x = NULL, y = NULL, fill = "",
title = "what is the rudest airplane behavior?")
```
## day16
```{r, message=FALSE, warning=FALSE}
library(tidyverse)
genes <- paste0("gene", 1:5) %>% set_names(.)
genes
```
这里有一个列表,其元素`list1, list2, list3`是3个长度不等的向量
```{r, message=FALSE, warning=FALSE}
big_list <- list(
list1 = paste0("gene", c(1:2, 6:7)),
list2 = paste0("gene", c(6:7)),
list3 = paste0("gene", c(1, 4:7))
)
big_list
```
需求:想看下 `r genes` 是否出现在 `list1, list2, list3`中,并统计成下表
```{r, echo=FALSE}
map(genes, ~{
gene = .x
mm = map_int(big_list, ~ (gene %in% .x)) # 这里出现了2个.x, 属于不同的map,会造成混淆.
}) %>%
tibble::enframe(x = .) %>%
unnest_wider(value)
```
```{r, include=FALSE}
map(genes, ~{
gene = .x
mm = map_int(big_list, ~ (gene %in% .x)) # 这里出现了2个.x, 属于不同的map,会造成混淆.
}) %>%
tibble::enframe(x = .) %>%
unnest_wider(value)
# 这个更简洁
imap_dfr(genes,.id = "genes", ~{
gene = .x # 这里出现了2个.x, 属于不同的map,会造成混淆.
map_int(big_list, ~ (gene %in% .x))
})
big_list %>%
map_dfc(~ as.numeric(genes %in% .x)) %>%
mutate(name = genes, .before = list1)
# 因此,推荐
tibble(name = genes) %>%
rowwise() %>%
mutate(
list = list(map_int(big_list, ~ (name %in% .x)))
) %>%
unnest_wider(list)
```
## day17
统计每支球队,比赛次数以及赢得比赛的分数之和
```{r}
games <- tibble::tribble(
~team, ~outcome, ~points,
"A", "Win", 3,
"A", "Lose", 1,
"A", "Win", 1,
"A", "Win", 2,
"B", "Win", 1,
"B", "Win", 1,
"B", "Lose", 3,
"B", "Lose", 1
)
games
```
```{r, include=FALSE}
# 同时对**所有行**以及**部分行**,统计
# summarize (all group values) and (a conditional subset) in the one summarise()
games %>%
group_by(team) %>%
summarise(
n_game = n(),
points_when_won = sum(points[outcome == "Win"])
)
```
## day18
只让gentoo这个分面,背景色高亮
```{r, message=FALSE, warning=FALSE}
library(tidyverse)
library(palmerpenguins)
penguins %>%
ggplot(aes(x = bill_length_mm, y = bill_depth_mm)) +
geom_point() +
facet_wrap(vars(species), ncol = 3)
```
```{r eval=FALSE, include=FALSE}
# way 1
penguins %>%
ggplot(aes(x = bill_length_mm, y = bill_depth_mm)) +
geom_rect(
data = penguins %>% filter(species == "Gentoo"),
aes(fill = species),
xmin = -Inf, xmax = Inf,
ymin = -Inf, ymax = Inf,
alpha = 0.05
) +
geom_point() +
facet_wrap(vars(species), ncol = 3)
```
```{r eval=FALSE, include=FALSE}
# way 2
penguins %>%
ggplot(aes(x = bill_length_mm, y = bill_depth_mm)) +
geom_rect(
aes(fill = species == "Gentoo"),
xmin = -Inf, xmax = Inf,
ymin = -Inf, ymax = Inf,
alpha = 0.05
) +
geom_point() +
facet_wrap(vars(species), ncol = 3) +
scale_fill_manual(values = c("TRUE" = "red", "FALSE" = "transparent"))
```
## day19
用下面的数据,画出柱中柱效果
```{r}
tb <- tibble::tribble(
~group, ~product, ~sale,
"Target", "Balender", 80,
"Target", "Fan", 90,
"Target", "Cooler", 70,
"Target", "AC", 95,
"Achieved", "Balender", 50,
"Achieved", "Fan", 55,
"Achieved", "Cooler", 60,
"Achieved", "AC", 45
)
tb
```
```{r, out.width = '85%', echo = FALSE}
knitr::include_graphics(here::here("images", "replot_bar_in_bar.png"))
```
```{r eval=FALSE, include=FALSE}
df <- tb %>%
group_split(group) %>%
map( ~ select(.x, -group)) %>%
reduce(left_join, by = "product") %>%
janitor::clean_names()
df %>%
mutate(product = factor(product, levels = c("Balender", "Fan", "Cooler", "AC"))) %>%
ggplot(aes(x = product)) +
geom_col(width = 0.5, aes(y = sale_y), fill = "gray", alpha = 0.8) +
geom_text(aes(y = sale_y, label = sale_y), vjust = -1) +
geom_col(width = 0.3, aes(y = sale_x), fill = "#175676") +
geom_text(aes(y = sale_x, label = sale_x), vjust = -1) +
theme_classic()
```
## day20
修改列名,在m或者f的后面加下划线
```{r}
tb <- tibble::tribble(
~id, ~new_ep_m014, ~newrel_f1524, ~new_sp_f65, ~new_ep_m3544,
1L, 3L, 2L, 4L, 1L,
2L, 4L, 4L, 5L, 2L,
3L, 5L, 5L, 6L, 6L,
4L, 6L, 6L, 7L, 8L
)
tb
```
```{r eval=FALSE, include=FALSE}
tb %>%
rename_with(~ str_replace(.x, "([m|f])", "\\1_"))
```
## day21
```{r, message=FALSE, warning=FALSE}
library(tidyverse)
df <- tibble(
x = 1:10,
y = sample(c("a", "b"), size = 10, replace = TRUE)
)
df
```
说出这里三行代码分别的含义
```{r, eval=FALSE}
df %>%
summarise(
y1 = sum(x),
y2 = sum(y == "a"),
y3 = sum(x[y == "a"])
)
```
```{r eval=FALSE, include=FALSE}
df %>%
summarise(
y1 = sum(x), # x列之和
y2 = sum(y == "a"), # y列中 "a" 出现的个数
y3 = sum(x[y == "a"]) # y为 "a" 时对应位置上的x之和
)
```
## day22
看中这个张图<https://www.healthsystemtracker.org/brief/covid-19-leading-cause-of-death-ranking/>,数据也是可以下载的
```{r, out.width = '85%', echo = FALSE}
knitr::include_graphics(here::here("images", "replot_cause_of_death_ranking.png"))
```
```{r eval=FALSE, include=FALSE}
library(tidyverse)
library(scales)
df <- read_csv("./demo_data/data-GHV6u.csv")
df <- df %>%
rename(value = `Average Daily Deaths`)
df %>%
ggplot(aes(x = value, y = fct_reorder(Category, value))) +
geom_col(aes(fill = Category == "COVID-19")) +
geom_text(
aes(label = label_number(big.mark = ",")(value),
hjust = ifelse(value > 150, 1, -.1),
color = ifelse(value > 150, "white", "black")
),
fontface = "bold"
) +
scale_fill_manual(
values = c("#1F3669", "#EC25A1")
) +
scale_color_identity() +
scale_x_continuous(
expand = expansion(mult = 0, add = 0)
) +
labs(x = NULL, y = NULL, title = "Average Daily Deaths") +
theme(
panel.background = element_rect(fill = "transparent"),
axis.ticks.y = element_blank(),
legend.position = "none"
)
```
## day23
问题,这两张图一样吗?
```{r, message=FALSE, warning=FALSE, eval=FALSE}
library(dplyr)
library(ggplot2)
df <- data.frame(
x = rnorm(n = 2 * 500),
group = rep(c("1", "2"), each = 500)
)
ggplot(df) +
geom_line(
mapping = aes(x = x, group = group),
stat = "density",
alpha = 0.5
)
ggplot(df) +
stat_density(
mapping = aes(x = x, group = group),
geom = "line",
alpha = 0.5
)
```
```{r eval=FALSE, include=FALSE}
# 第一张图
ggplot(df) +
geom_line(
mapping = aes(x = x, group = group),
stat = "density",
alpha = 0.5
)
# 等价于
df %>%
ggplot(aes(x = x, group = group)) +
layer(
stat = "density",
geom = "line",
params = list(na.rm = FALSE),
position = "identity"
)
# 第二张图
ggplot(df) +
stat_density(
mapping = aes(x = x, group = group),
geom = "line",
alpha = 0.5
)
# 等价于
df %>%
ggplot(aes(x = x, group = group)) +
layer(
stat = "density",
geom = "line",
params = list(na.rm = FALSE),
position = "stack" # 一个人骑在另一个人身上的感觉
)
```
## day24
```{r, message=FALSE, warning=FALSE, eval=FALSE}
1 == "1"
```
结果会是什么?
1. TRUE
2. FALSE
3. Error
4. NULL
```{r, eval=FALSE, include=FALSE}
# 左边的 1 被转换成 "1", 变成了"1" == "1"
# 所以结果是 TRUE
```
## day25
如何让连续在一起的类别,分为一组。比如这里的x变量,分为4组
```{r}
df <- tibble::tribble(
~x, ~y,
"a", 2,
"a", 3,
"b", 4,
"b", 5,
"a", 1,
"a", 3,
"a", 2,
"b", 3
)
df
```
```{r eval=FALSE, include=FALSE}
# 方法1
df %>%
mutate(
g = cumsum(c(0, x[1:(length(x) - 1)] != x[2:length(x)]))
)
# 方法2
df$x %>% rle()