forked from deepinsight/insightface
-
Notifications
You must be signed in to change notification settings - Fork 1
/
vpl.py
186 lines (156 loc) · 7.91 KB
/
vpl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import logging
import os
import torch
import torch.distributed as dist
from torch.nn import Module
from torch.nn.functional import normalize, linear
from torch.nn.parameter import Parameter
class VPL(Module):
"""
Modified from Partial-FC
"""
@torch.no_grad()
def __init__(self, rank, local_rank, world_size, batch_size, resume,
margin_softmax, num_classes, sample_rate=1.0, embedding_size=512, prefix="./", cfg=None):
super(VPL, self).__init__()
#
assert sample_rate==1.0
assert not resume
self.num_classes: int = num_classes
self.rank: int = rank
self.local_rank: int = local_rank
self.device: torch.device = torch.device("cuda:{}".format(self.local_rank))
self.world_size: int = world_size
self.batch_size: int = batch_size
self.margin_softmax: callable = margin_softmax
self.sample_rate: float = sample_rate
self.embedding_size: int = embedding_size
self.prefix: str = prefix
self.num_local: int = num_classes // world_size + int(rank < num_classes % world_size)
self.class_start: int = num_classes // world_size * rank + min(rank, num_classes % world_size)
self.num_sample: int = int(self.sample_rate * self.num_local)
self.weight_name = os.path.join(self.prefix, "rank_{}_softmax_weight.pt".format(self.rank))
self.weight_mom_name = os.path.join(self.prefix, "rank_{}_softmax_weight_mom.pt".format(self.rank))
self.weight = torch.normal(0, 0.01, (self.num_local, self.embedding_size), device=self.device)
self.weight_mom: torch.Tensor = torch.zeros_like(self.weight)
logging.info("softmax weight init successfully!")
logging.info("softmax weight mom init successfully!")
self.stream: torch.cuda.Stream = torch.cuda.Stream(local_rank)
self.index = None
self.update = lambda: 0
self.sub_weight = Parameter(self.weight)
self.sub_weight_mom = self.weight_mom
#vpl variables
self._iters = 0
self.cfg = cfg
self.vpl_mode = -1
if self.cfg is not None:
self.vpl_mode = self.cfg['mode']
if self.vpl_mode>=0:
self.register_buffer("queue", torch.randn(self.num_local, self.embedding_size, device=self.device))
self.queue = normalize(self.queue)
self.register_buffer("queue_iters", torch.zeros((self.num_local,), dtype=torch.long, device=self.device))
self.register_buffer("queue_lambda", torch.zeros((self.num_local,), dtype=torch.float32, device=self.device))
def save_params(self):
pass
#torch.save(self.weight.data, self.weight_name)
#torch.save(self.weight_mom, self.weight_mom_name)
@torch.no_grad()
def sample(self, total_label):
index_positive = (self.class_start <= total_label) & (total_label < self.class_start + self.num_local)
total_label[~index_positive] = -1
total_label[index_positive] -= self.class_start
return index_positive
def forward(self, total_features, norm_weight):
torch.cuda.current_stream().wait_stream(self.stream)
logits = linear(total_features, norm_weight)
return logits
@torch.no_grad()
def update(self):
self.weight_mom[self.index] = self.sub_weight_mom
self.weight[self.index] = self.sub_weight
def prepare(self, label, optimizer):
with torch.cuda.stream(self.stream):
total_label = torch.zeros(
size=[self.batch_size * self.world_size], device=self.device, dtype=torch.long)
dist.all_gather(list(total_label.chunk(self.world_size, dim=0)), label)
index_positive = self.sample(total_label)
optimizer.state.pop(optimizer.param_groups[-1]['params'][0], None)
optimizer.param_groups[-1]['params'][0] = self.sub_weight
optimizer.state[self.sub_weight]['momentum_buffer'] = self.sub_weight_mom
norm_weight = normalize(self.sub_weight)
return total_label, norm_weight, index_positive
@torch.no_grad()
def prepare_queue_lambda(self, label, iters):
self.queue_lambda[:] = 0.0
if iters>self.cfg['start_iters']:
allowed_delta = self.cfg['allowed_delta']
if self.vpl_mode==0:
past_iters = iters - self.queue_iters
idx = torch.where(past_iters <= allowed_delta)[0]
self.queue_lambda[idx] = self.cfg['lambda']
if iters % 2000 == 0 and self.rank == 0:
logging.info('[%d]use-lambda: %d/%d'%(iters,len(idx), self.num_local))
@torch.no_grad()
def set_queue(self, total_features, total_label, index_positive, iters):
local_label = total_label[index_positive]
sel_features = normalize(total_features[index_positive,:])
self.queue[local_label,:] = sel_features
self.queue_iters[local_label] = iters
def forward_backward(self, label, features, optimizer, feature_w):
self._iters += 1
total_label, norm_weight, index_positive = self.prepare(label, optimizer)
total_features = torch.zeros(
size=[self.batch_size * self.world_size, self.embedding_size], device=self.device)
dist.all_gather(list(total_features.chunk(self.world_size, dim=0)), features.data)
total_features.requires_grad = True
if feature_w is not None:
total_feature_w = torch.zeros(
size=[self.batch_size * self.world_size, self.embedding_size], device=self.device)
dist.all_gather(list(total_feature_w.chunk(self.world_size, dim=0)), feature_w.data)
if self.vpl_mode>=0:
self.prepare_queue_lambda(total_label, self._iters)
_lambda = self.queue_lambda.view(self.num_local, 1)
injected_weight = norm_weight*(1.0-_lambda) + self.queue*_lambda
injected_norm_weight = normalize(injected_weight)
logits = self.forward(total_features, injected_norm_weight)
else:
logits = self.forward(total_features, norm_weight)
logits = self.margin_softmax(logits, total_label)
with torch.no_grad():
max_fc = torch.max(logits, dim=1, keepdim=True)[0]
dist.all_reduce(max_fc, dist.ReduceOp.MAX)
# calculate exp(logits) and all-reduce
logits_exp = torch.exp(logits - max_fc)
logits_sum_exp = logits_exp.sum(dim=1, keepdims=True)
dist.all_reduce(logits_sum_exp, dist.ReduceOp.SUM)
# calculate prob
logits_exp.div_(logits_sum_exp)
# get one-hot
grad = logits_exp
index = torch.where(total_label != -1)[0]
one_hot = torch.zeros(size=[index.size()[0], grad.size()[1]], device=grad.device)
one_hot.scatter_(1, total_label[index, None], 1)
# calculate loss
loss = torch.zeros(grad.size()[0], 1, device=grad.device)
loss[index] = grad[index].gather(1, total_label[index, None])
dist.all_reduce(loss, dist.ReduceOp.SUM)
loss_v = loss.clamp_min_(1e-30).log_().mean() * (-1)
# calculate grad
grad[index] -= one_hot
grad.div_(self.batch_size * self.world_size)
logits.backward(grad)
if total_features.grad is not None:
total_features.grad.detach_()
x_grad: torch.Tensor = torch.zeros_like(features, requires_grad=True)
# feature gradient all-reduce
dist.reduce_scatter(x_grad, list(total_features.grad.chunk(self.world_size, dim=0)))
x_grad = x_grad * self.world_size
#vpl set queue
if self.vpl_mode>=0:
if feature_w is None:
self.set_queue(total_features.detach(), total_label, index_positive, self._iters)
else:
self.set_queue(total_feature_w, total_label, index_positive, self._iters)
# backward backbone
return x_grad, loss_v