forked from deepinsight/insightface
-
Notifications
You must be signed in to change notification settings - Fork 1
/
onnx_ijbc.py
269 lines (233 loc) · 10.1 KB
/
onnx_ijbc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import argparse
import os
import pickle
import timeit
import cv2
import mxnet as mx
import numpy as np
import pandas as pd
import prettytable
import skimage.transform
import torch
from sklearn.metrics import roc_curve
from sklearn.preprocessing import normalize
from torch.utils.data import DataLoader
from onnx_helper import ArcFaceORT
SRC = np.array(
[
[30.2946, 51.6963],
[65.5318, 51.5014],
[48.0252, 71.7366],
[33.5493, 92.3655],
[62.7299, 92.2041]]
, dtype=np.float32)
SRC[:, 0] += 8.0
@torch.no_grad()
class AlignedDataSet(mx.gluon.data.Dataset):
def __init__(self, root, lines, align=True):
self.lines = lines
self.root = root
self.align = align
def __len__(self):
return len(self.lines)
def __getitem__(self, idx):
each_line = self.lines[idx]
name_lmk_score = each_line.strip().split(' ')
name = os.path.join(self.root, name_lmk_score[0])
img = cv2.cvtColor(cv2.imread(name), cv2.COLOR_BGR2RGB)
landmark5 = np.array([float(x) for x in name_lmk_score[1:-1]], dtype=np.float32).reshape((5, 2))
st = skimage.transform.SimilarityTransform()
st.estimate(landmark5, SRC)
img = cv2.warpAffine(img, st.params[0:2, :], (112, 112), borderValue=0.0)
img_1 = np.expand_dims(img, 0)
img_2 = np.expand_dims(np.fliplr(img), 0)
output = np.concatenate((img_1, img_2), axis=0).astype(np.float32)
output = np.transpose(output, (0, 3, 1, 2))
return torch.from_numpy(output)
@torch.no_grad()
def extract(model_root, dataset):
model = ArcFaceORT(model_path=model_root)
model.check()
feat_mat = np.zeros(shape=(len(dataset), 2 * model.feat_dim))
def collate_fn(data):
return torch.cat(data, dim=0)
data_loader = DataLoader(
dataset, batch_size=128, drop_last=False, num_workers=4, collate_fn=collate_fn, )
num_iter = 0
for batch in data_loader:
batch = batch.numpy()
batch = (batch - model.input_mean) / model.input_std
feat = model.session.run(model.output_names, {model.input_name: batch})[0]
feat = np.reshape(feat, (-1, model.feat_dim * 2))
feat_mat[128 * num_iter: 128 * num_iter + feat.shape[0], :] = feat
num_iter += 1
if num_iter % 50 == 0:
print(num_iter)
return feat_mat
def read_template_media_list(path):
ijb_meta = pd.read_csv(path, sep=' ', header=None).values
templates = ijb_meta[:, 1].astype(np.int)
medias = ijb_meta[:, 2].astype(np.int)
return templates, medias
def read_template_pair_list(path):
pairs = pd.read_csv(path, sep=' ', header=None).values
t1 = pairs[:, 0].astype(np.int)
t2 = pairs[:, 1].astype(np.int)
label = pairs[:, 2].astype(np.int)
return t1, t2, label
def read_image_feature(path):
with open(path, 'rb') as fid:
img_feats = pickle.load(fid)
return img_feats
def image2template_feature(img_feats=None,
templates=None,
medias=None):
unique_templates = np.unique(templates)
template_feats = np.zeros((len(unique_templates), img_feats.shape[1]))
for count_template, uqt in enumerate(unique_templates):
(ind_t,) = np.where(templates == uqt)
face_norm_feats = img_feats[ind_t]
face_medias = medias[ind_t]
unique_medias, unique_media_counts = np.unique(face_medias, return_counts=True)
media_norm_feats = []
for u, ct in zip(unique_medias, unique_media_counts):
(ind_m,) = np.where(face_medias == u)
if ct == 1:
media_norm_feats += [face_norm_feats[ind_m]]
else: # image features from the same video will be aggregated into one feature
media_norm_feats += [np.mean(face_norm_feats[ind_m], axis=0, keepdims=True), ]
media_norm_feats = np.array(media_norm_feats)
template_feats[count_template] = np.sum(media_norm_feats, axis=0)
if count_template % 2000 == 0:
print('Finish Calculating {} template features.'.format(
count_template))
template_norm_feats = normalize(template_feats)
return template_norm_feats, unique_templates
def verification(template_norm_feats=None,
unique_templates=None,
p1=None,
p2=None):
template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int)
for count_template, uqt in enumerate(unique_templates):
template2id[uqt] = count_template
score = np.zeros((len(p1),))
total_pairs = np.array(range(len(p1)))
batchsize = 100000
sublists = [total_pairs[i: i + batchsize] for i in range(0, len(p1), batchsize)]
total_sublists = len(sublists)
for c, s in enumerate(sublists):
feat1 = template_norm_feats[template2id[p1[s]]]
feat2 = template_norm_feats[template2id[p2[s]]]
similarity_score = np.sum(feat1 * feat2, -1)
score[s] = similarity_score.flatten()
if c % 10 == 0:
print('Finish {}/{} pairs.'.format(c, total_sublists))
return score
def verification2(template_norm_feats=None,
unique_templates=None,
p1=None,
p2=None):
template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int)
for count_template, uqt in enumerate(unique_templates):
template2id[uqt] = count_template
score = np.zeros((len(p1),)) # save cosine distance between pairs
total_pairs = np.array(range(len(p1)))
batchsize = 100000 # small batchsize instead of all pairs in one batch due to the memory limiation
sublists = [total_pairs[i:i + batchsize] for i in range(0, len(p1), batchsize)]
total_sublists = len(sublists)
for c, s in enumerate(sublists):
feat1 = template_norm_feats[template2id[p1[s]]]
feat2 = template_norm_feats[template2id[p2[s]]]
similarity_score = np.sum(feat1 * feat2, -1)
score[s] = similarity_score.flatten()
if c % 10 == 0:
print('Finish {}/{} pairs.'.format(c, total_sublists))
return score
def main(args):
use_norm_score = True # if Ture, TestMode(N1)
use_detector_score = True # if Ture, TestMode(D1)
use_flip_test = True # if Ture, TestMode(F1)
assert args.target == 'IJBC' or args.target == 'IJBB'
start = timeit.default_timer()
templates, medias = read_template_media_list(
os.path.join('%s/meta' % args.image_path, '%s_face_tid_mid.txt' % args.target.lower()))
stop = timeit.default_timer()
print('Time: %.2f s. ' % (stop - start))
start = timeit.default_timer()
p1, p2, label = read_template_pair_list(
os.path.join('%s/meta' % args.image_path,
'%s_template_pair_label.txt' % args.target.lower()))
stop = timeit.default_timer()
print('Time: %.2f s. ' % (stop - start))
start = timeit.default_timer()
img_path = '%s/loose_crop' % args.image_path
img_list_path = '%s/meta/%s_name_5pts_score.txt' % (args.image_path, args.target.lower())
img_list = open(img_list_path)
files = img_list.readlines()
dataset = AlignedDataSet(root=img_path, lines=files, align=True)
img_feats = extract(args.model_root, dataset)
faceness_scores = []
for each_line in files:
name_lmk_score = each_line.split()
faceness_scores.append(name_lmk_score[-1])
faceness_scores = np.array(faceness_scores).astype(np.float32)
stop = timeit.default_timer()
print('Time: %.2f s. ' % (stop - start))
print('Feature Shape: ({} , {}) .'.format(img_feats.shape[0], img_feats.shape[1]))
start = timeit.default_timer()
if use_flip_test:
img_input_feats = img_feats[:, 0:img_feats.shape[1] // 2] + img_feats[:, img_feats.shape[1] // 2:]
else:
img_input_feats = img_feats[:, 0:img_feats.shape[1] // 2]
if use_norm_score:
img_input_feats = img_input_feats
else:
img_input_feats = img_input_feats / np.sqrt(np.sum(img_input_feats ** 2, -1, keepdims=True))
if use_detector_score:
print(img_input_feats.shape, faceness_scores.shape)
img_input_feats = img_input_feats * faceness_scores[:, np.newaxis]
else:
img_input_feats = img_input_feats
template_norm_feats, unique_templates = image2template_feature(
img_input_feats, templates, medias)
stop = timeit.default_timer()
print('Time: %.2f s. ' % (stop - start))
start = timeit.default_timer()
score = verification(template_norm_feats, unique_templates, p1, p2)
stop = timeit.default_timer()
print('Time: %.2f s. ' % (stop - start))
result_dir = args.model_root
save_path = os.path.join(result_dir, "{}_result".format(args.target))
if not os.path.exists(save_path):
os.makedirs(save_path)
score_save_file = os.path.join(save_path, "{}.npy".format(args.target))
np.save(score_save_file, score)
files = [score_save_file]
methods = []
scores = []
for file in files:
methods.append(os.path.basename(file))
scores.append(np.load(file))
methods = np.array(methods)
scores = dict(zip(methods, scores))
x_labels = [10 ** -6, 10 ** -5, 10 ** -4, 10 ** -3, 10 ** -2, 10 ** -1]
tpr_fpr_table = prettytable.PrettyTable(['Methods'] + [str(x) for x in x_labels])
for method in methods:
fpr, tpr, _ = roc_curve(label, scores[method])
fpr = np.flipud(fpr)
tpr = np.flipud(tpr)
tpr_fpr_row = []
tpr_fpr_row.append("%s-%s" % (method, args.target))
for fpr_iter in np.arange(len(x_labels)):
_, min_index = min(
list(zip(abs(fpr - x_labels[fpr_iter]), range(len(fpr)))))
tpr_fpr_row.append('%.2f' % (tpr[min_index] * 100))
tpr_fpr_table.add_row(tpr_fpr_row)
print(tpr_fpr_table)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='do ijb test')
# general
parser.add_argument('--model-root', default='', help='path to load model.')
parser.add_argument('--image-path', default='/train_tmp/IJB_release/IJBC', type=str, help='')
parser.add_argument('--target', default='IJBC', type=str, help='target, set to IJBC or IJBB')
main(parser.parse_args())