forked from ai-forever/ru-gpts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate_samples.py
executable file
·204 lines (156 loc) · 6.39 KB
/
generate_samples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# coding=utf-8
# Copyright (c) 2020, Sber. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Sample Generate GPT3"""
import os
import time
import torch
from transformers.tokenization_gpt2 import GPT2Tokenizer
from src import mpu
from src.arguments import get_args
from src.fp16 import FP16_Module
from src.model import DistributedDataParallel as DDP
from src.model import GPT3Model
from pretrain_gpt3 import generate
from pretrain_gpt3 import initialize_distributed
from pretrain_gpt3 import set_random_seed
from src.utils import Timers
from src.utils import export_to_huggingface_model
from src.utils import print_rank_0, load_checkpoint, DEEPSPEED_WRAP
def get_model(args):
"""Build the model."""
print_rank_0('building GPT3 model ...')
model = GPT3Model(num_layers=args.num_layers,
vocab_size=args.vocab_size,
hidden_size=args.hidden_size,
num_attention_heads=args.num_attention_heads,
embedding_dropout_prob=args.hidden_dropout,
attention_dropout_prob=args.attention_dropout,
output_dropout_prob=args.hidden_dropout,
max_sequence_length=args.max_position_embeddings,
checkpoint_activations=args.checkpoint_activations,
checkpoint_num_layers=args.checkpoint_num_layers,
parallel_output=False)
if mpu.get_data_parallel_rank() == 0:
print(' > number of parameters on model parallel rank {}: {}'.format(
mpu.get_model_parallel_rank(),
sum([p.nelement() for p in model.parameters()])), flush=True)
# GPU allocation.
model.cuda(torch.cuda.current_device())
# Fp16 conversion.
if args.fp16:
model = FP16_Module(model)
# Wrap model for distributed training.
model = DDP(model)
return model
def setup_model(args):
"""Setup model and optimizer."""
model = get_model(args)
if DEEPSPEED_WRAP and args.deepspeed:
print_rank_0("DeepSpeed is enabled.")
model, optimizer, _, lr_scheduler = DEEPSPEED_WRAP.deepspeed.initialize(
model=model,
optimizer=None,
args=args,
lr_scheduler=None,
mpu=mpu,
dist_init_required=False
)
print("Load checkpoint from " + args.load)
_ = load_checkpoint(model, None, None, args, deepspeed=DEEPSPEED_WRAP and args.deepspeed)
model.eval()
print("Loaded")
if args.export_huggingface is not None:
export_to_huggingface_model(model, args.export_huggingface)
print(f"Exported in huggingface format to {args.export_huggingface}")
return model
def generate_samples(model, tokenizer, args):
model.eval()
with torch.no_grad():
while True:
torch.distributed.barrier(group=mpu.get_model_parallel_group())
terminate_runs = 0
if mpu.get_model_parallel_rank() == 0:
raw_text = input("\nContext prompt (stop to exit) >>> ")
while not raw_text:
print('Prompt should not be empty!')
raw_text = input("\nContext prompt (stop to exit) >>> ")
if "stop" in raw_text:
terminate_runs = 1
else:
context_tokens = tokenizer(raw_text)['input_ids']
context_length = len(context_tokens)
if context_length >= args.seq_length // 2:
print("\nContext length", context_length,
"\nPlease give smaller context (half of the sequence length)!")
continue
else:
_ = tokenizer("EMPTY TEXT")['input_ids']
terminate_runs_tensor = torch.cuda.LongTensor([terminate_runs])
torch.distributed.broadcast(terminate_runs_tensor, mpu.get_model_parallel_src_rank(),
group=mpu.get_model_parallel_group())
terminate_runs = terminate_runs_tensor[0].item()
if terminate_runs == 1:
return
start_time = time.time()
generated = generate(
model, tokenizer, raw_text,
out_seq_length=args.out_seq_length,
seq_length=args.seq_length,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p
)
if mpu.get_model_parallel_rank() == 0:
os.system('clear')
print("\nTaken time {:.2f}\n".format(time.time() - start_time), flush=True)
print("\nContext:", raw_text, flush=True)
print("\nGPT:", generated, flush=True)
raw_text = None
torch.distributed.barrier(group=mpu.get_model_parallel_group())
def prepare_tokenizer(args):
tokenizer = GPT2Tokenizer.from_pretrained(args.tokenizer_path)
eod_token = tokenizer.encoder['<pad>']
num_tokens = len(tokenizer)
args.tokenizer_num_tokens = num_tokens
args.eod_token = eod_token
after = num_tokens
while after % args.make_vocab_size_divisible_by != 0:
after += 1
args.vocab_size = after
print(f"prepare tokenizer done, size {after}", flush=True)
return tokenizer
def main():
"""Main training program."""
print('Generate Samples')
# Disable CuDNN.
torch.backends.cudnn.enabled = False
# Timer.
_ = Timers()
# Arguments.
args = get_args()
# Pytorch distributed.
initialize_distributed(args)
# Random seeds for reproducability.
set_random_seed(args.seed)
# get the tokenizer
tokenizer = prepare_tokenizer(args)
# Model, optimizer, and learning rate.
model = setup_model(args)
# setting default batch size to 1
args.batch_size = 1
# generate samples
generate_samples(model, tokenizer, args)
if __name__ == "__main__":
main()