-
Notifications
You must be signed in to change notification settings - Fork 0
/
cifar10.yaml
115 lines (115 loc) · 4.24 KB
/
cifar10.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
!obj:pylearn2.train.Train {
dataset: &train !obj:pylearn2.datasets.zca_dataset.ZCA_Dataset {
preprocessed_dataset: !pkl: "${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/train.pkl",
preprocessor: !pkl: "${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/preprocessor.pkl",
axes: ['c', 0, 1, 'b']
},
model: !obj:pylearn2.models.mlp.MLP {
batch_size: 128,
layers: [
!obj:pylearn2.models.maxout.MaxoutConvC01B {
layer_name: 'h0',
pad: 4,
tied_b: 1,
W_lr_scale: .05,
b_lr_scale: .05,
num_channels: 96,
num_pieces: 2,
kernel_shape: [8, 8],
pool_shape: [4, 4],
pool_stride: [2, 2],
irange: .005,
max_kernel_norm: .9,
partial_sum: 33,
},
!obj:pylearn2.models.maxout.MaxoutConvC01B {
layer_name: 'h1',
pad: 3,
tied_b: 1,
W_lr_scale: .05,
b_lr_scale: .05,
num_channels: 192,
num_pieces: 2,
kernel_shape: [8, 8],
pool_shape: [4, 4],
pool_stride: [2, 2],
irange: .005,
max_kernel_norm: 1.9365,
partial_sum: 15,
},
!obj:pylearn2.models.maxout.MaxoutConvC01B {
pad: 3,
layer_name: 'h2',
tied_b: 1,
W_lr_scale: .05,
b_lr_scale: .05,
num_channels: 192,
num_pieces: 2,
kernel_shape: [5, 5],
pool_shape: [2, 2],
pool_stride: [2, 2],
irange: .005,
max_kernel_norm: 1.9365,
},
!obj:pylearn2.models.maxout.Maxout {
layer_name: 'h3',
irange: .005,
num_units: 500,
num_pieces: 5,
max_col_norm: 1.9
},
!obj:pylearn2.models.mlp.Softmax {
max_col_norm: 1.9365,
layer_name: 'y',
n_classes: 10,
irange: .005
}
],
input_space: !obj:pylearn2.space.Conv2DSpace {
shape: &window_shape [32, 32],
num_channels: 3,
axes: ['c', 0, 1, 'b'],
},
},
algorithm: !obj:pylearn2.training_algorithms.sgd.SGD {
learning_rate: .17,
init_momentum: .5,
train_iteration_mode: 'even_shuffled_sequential',
monitor_iteration_mode: 'even_sequential',
monitoring_dataset:
{
'test' : &valid !obj:pylearn2.datasets.zca_dataset.ZCA_Dataset {
preprocessed_dataset: !pkl: "${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/test.pkl",
preprocessor: !pkl: "${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/preprocessor.pkl",
axes: ['c', 0, 1, 'b']
},
},
cost: !obj:pylearn2.costs.mlp.dropout.Dropout {
input_include_probs: { 'h0' : .8 },
input_scales: { 'h0' : 1. }
},
termination_criterion: !obj:pylearn2.termination_criteria.EpochCounter {
max_epochs: 474
},
},
extensions: [
!obj:pylearn2.training_algorithms.sgd.MomentumAdjustor {
start: 1,
saturate: 250,
final_momentum: .65
},
!obj:pylearn2.training_algorithms.sgd.LinearDecayOverEpoch {
start: 1,
saturate: 500,
decay_factor: .01
},
!obj:pylearn2.train_extensions.window_flip.WindowAndFlip {
pad_randomized: 8,
window_shape: *window_shape,
randomize: [ *train],
center: [ *valid ]
}
],
save_path: "${PYLEARN2_TRAIN_FILE_FULL_STEM}.pkl",
save_freq: 1
}