forked from eilion/BIGMACS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
R68.log
198 lines (194 loc) · 12.1 KB
/
R68.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
MATLAB is selecting SOFTWARE OPENGL rendering.
OMP: Warning #181: OMP_STACKSIZE: ignored because KMP_STACKSIZE has been defined
< M A T L A B (R) >
Copyright 1984-2022 The MathWorks, Inc.
R2022a (9.12.0.1884302) 64-bit (glnxa64)
February 16, 2022
To get started, type doc.
For product information, visit www.mathworks.com.
Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 36).
Number of workers: 36
-------------------------------------------------------------------------------------------
## BIGMACS: Bayesian Inference Gaussian Process Multiproxy Alignment of Continuous Signals
-------------------------------------------------------------------------------------------
## Stack construction algorithm is now running...
# Initializing...
Data are loaded successfully.
Initializing the age samples...
Done.
# Stacking algorithm is now running...
# Iteration 1:
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [20.7264 19.7386 36.7199 6.65208 54.9957 49.5102 31.7397 6.38188 12.2854 31.142 61.5961 5.65768 31.8726 53.6106].
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [0.44747 0.07084 0.040955 0.25554 0.067449 0.12698 0.0092282 0.019985 -0.041502 0.13667 0.24662 -0.17619 0.022268 0.12429].
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [0.038319 0.023693 0.26182 0.076478 -0.17967 0.022413 -0.020899 0.17609 -0.11353 0.44316 -0.073935 0.087168 0.051666 0.20037].
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [0.049502 -0.1909 0.0017164 0.067973 -0.054432 -0.05996 -0.057849 0.11023 0.21684 0.042212 0.077724 -0.084776 -0.044022 0.4198].
Records are aligned to the target stack.
Iteration 1/10...
Iteration 2/10...
Iteration 3/10...
Iteration 4/10...
Iteration 5/10...
Iteration 6/10...
Iteration 7/10...
Iteration 8/10...
Iteration 9/10...
Iteration 10/10...
A new stack is updated.
# Iteration 2:
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [18.6346 17.3298 27.2117 4.93873 61.9891 51.284 37.0216 13.6336 13.9517 48.7316 56.9791 11.8094 28.7842 25.6379].
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [0.063704 0.028401 1.1464 -0.26216 0.53789 -0.17541 0.45586 0.28064 0.051285 0.47963 0.306 0.32153 0.067965 -0.0012511].
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [0.035706 0.16753 -0.0064125 0.1967 0.13662 -0.15264 0.039965 -0.065815 -0.12873 0.13116 -0.012133 -0.083152 0.073878 -0.024784].
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [0.088112 0.0045629 -0.020885 0.022494 -0.013236 -0.060839 0.53712 0.074119 -0.012984 0.0075188 -0.42385 -0.04133 -0.35808 -0.063618].
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [-0.19499 0.0080156 0.011317 0.018309 0.015768 -0.30344 -0.059706 0.049753 -0.005873 -0.016613 0.52839 0.035622 0.21121 0.046604].
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [0.19042 -0.008496 -0.058139 -0.019545 -0.066707 0.19456 0.087273 -0.15863 0.0078365 0.0076586 -0.046949 -0.037443 0.026303 -0.13063].
Records are aligned to the target stack.
Iteration 1/10...
Iteration 2/10...
Iteration 3/10...
Iteration 4/10...
Iteration 5/10...
Iteration 6/10...
Iteration 7/10...
Iteration 8/10...
Iteration 9/10...
Iteration 10/10...
A new stack is updated.
# Iteration 3:
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [0.043135 -0.1207 0.40323 -0.016334 -0.39634 0.0037103 0.084749 -0.47587 0.63475 -0.19673 0.6721 1.3358 -0.1014 -0.079691].
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [-0.03789 -0.04924 -0.18607 -0.030429 0.29777 0.13676 0.051657 -0.013193 0.1659 -0.25991 0.24152 -0.47713 0.039098 -0.031158].
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [0.11439 -0.031684 -0.002927 0.002173 0.0077317 0.12637 -0.28345 0.11819 -0.0015091 0.057817 -0.10754 -0.0099631 -0.014474 0.032102].
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [0.00093246 -0.046462 -0.046684 0.069247 0.19163 -0.11924 0.039872 0.13778 0.075357 0.20573 -0.38079 0.23746 -0.065499 -0.29553].
Records are aligned to the target stack.
Iteration 1/10...
Iteration 2/10...
Iteration 3/10...
Iteration 4/10...
Iteration 5/10...
Iteration 6/10...
Iteration 7/10...
Iteration 8/10...
Iteration 9/10...
Iteration 10/10...
A new stack is updated.
# Iteration 4:
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [0.047935 -0.050753 0.12743 0.13176 -0.054537 0.52649 -0.39976 -0.32893 0.0081593 -0.079987 0.97445 -0.43202 -0.030723 0.0039625].
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [0.0057894 0.47267 0.19818 0.11282 -0.00029419 -0.19455 0.12316 0.090193 0.073545 -0.15742 0.36739 -0.074531 -0.044963 0.0053861].
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [0.11178 0.15771 0.12042 -0.0021169 -0.057689 0.076756 -0.68348 0.055007 0.0036271 -0.072659 0.14046 -0.11592 -0.098899 -0.095704].
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [-0.043172 -0.10001 0.17431 -0.25688 -0.13056 0.77131 0.0041045 -0.033663 0.021511 0.20586 -0.035525 0.1777 0.17075 0.048877].
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [-0.017454 0.10352 0.26674 0.27808 -0.31529 0.38708 0.018483 -0.034501 -0.033446 -0.5246 0.019397 -0.10044 0.15088 -0.2462].
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [0.12229 -0.096786 -0.11006 -0.067565 0.44267 -0.43102 -0.65252 0.050958 -0.050305 -0.055494 0.037847 0.2047 -0.063382 0.41102].
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [-0.18222 0.097902 -0.014733 -0.01379 -0.025669 0.79443 -0.067068 -0.0075403 -0.037061 0.15557 0.02914 -0.28968 0.056293 -0.35759].
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [-0.017901 -0.0020104 -0.72976 0.046917 0.011856 0.25594 0.065682 0.017653 0.029433 -0.10089 -0.017981 0.20819 -0.007158 0.30493].
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [0.022856 0.0026021 0.4038 0.026856 0.01901 -0.109 -0.013019 -0.016352 0.080032 0.069966 0.0056924 -0.18538 -0.058213 -0.22285].
Records are aligned to the target stack.
Iteration 1/10...
Iteration 2/10...
Iteration 3/10...
Iteration 4/10...
Iteration 5/10...
Iteration 6/10...
Iteration 7/10...
Iteration 8/10...
Iteration 9/10...
Iteration 10/10...
A new stack is updated.
# Iteration 5:
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [0.067188 0.66684 -0.010092 0.36155 -0.084739 0.43093 0.048791 0.26656 0.20028 0.27397 -0.31468 0.20848 0.14138 -0.17549].
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [0.019434 0.0012283 -0.027337 0.0045801 0.00066294 -0.50588 -0.26014 0.76276 0.13292 -0.11835 0.1169 0.050773 0.081008 -0.4585].
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [0.0010992 0.023056 -0.0037275 -0.030919 -0.019208 -0.20277 0.36411 -0.04111 -0.097211 -0.061242 -0.057244 0.10539 0.062527 0.11149].
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [-0.074515 0.20472 -0.10765 -0.06769 0.067698 0.14226 0.12052 -0.40461 0.029308 0.17973 -0.4442 -0.017335 -0.056925 -0.23204].
Records are aligned to the target stack.
Iteration 1/10...
Iteration 2/10...
Iteration 3/10...
Iteration 4/10...
Iteration 5/10...
Iteration 6/10...
Iteration 7/10...
Iteration 8/10...
Iteration 9/10...
Iteration 10/10...
A new stack is updated.
Done.
# Age model construction algorithm is now running...
# Iteration 1:
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [-0.32413 0.0248 -0.17516 -0.00089243 -0.048732 0.15092 -0.12798 -0.33842 -0.052765 0.82134 -0.2004 0.93174 -0.07539 0.034626].
# Iteration 2:
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [0.033908 -0.00079336 -0.81548 -0.04472 -0.1372 0.10848 -0.3969 -0.27935 -0.046007 -0.57044 0.55913 0.71695 0.075358 0.07671].
# Iteration 3:
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [-0.010387 -0.0038154 -0.23706 0.0062542 0.055023 0.12839 -0.10574 0.17632 -0.020623 0.009404 0.37724 -0.12947 0.041455 -0.75261].
# Iteration 4:
Ages are sampled.
Parameters are updated.
Updating parameters makes the average log-likelihood of samples increased by [-0.11469 0.1611 0.014688 0.00049034 0.13406 -0.19064 -0.15038 0.090336 -0.030084 -0.0024535 0.13561 0.0071472 -0.070046 -0.21979].
# Parameters are learned. Sampling algorithm is now running...
-------------------------------------------------------------------------------------------
# Results and figures are being stored...
[Warning: MATLAB has disabled some advanced graphics rendering features by
switching to software OpenGL. For more information, click <a
href="matlab:opengl('problems')">here</a>.]
Done.
Results and figures are stored in Outputs/R68_d18O_stack.
-------------------------------------------------------------------------------------------
Time elapsed = 5107 s