From 48ade94538fa509465d71023e49d07aab0ec8cd5 Mon Sep 17 00:00:00 2001 From: slaren Date: Sun, 5 Nov 2023 08:12:13 +0100 Subject: [PATCH] cuda : revert CUDA pool stuff (#3944) * Revert "cuda : add ROCM aliases for CUDA pool stuff (#3918)" This reverts commit 629f917cd6b96ba1274c49a8aab163b1b189229d. * Revert "cuda : use CUDA memory pool with async memory allocation/deallocation when available (#3903)" This reverts commit d6069051de7165a4e06662c89257f5d2905bb156. ggml-ci --- ggml-cuda.cu | 131 ++++++++++++++++++++------------------------------- 1 file changed, 50 insertions(+), 81 deletions(-) diff --git a/ggml-cuda.cu b/ggml-cuda.cu index bdbcca0cabb88..dc14f2f5d76c6 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -39,10 +39,6 @@ #define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer #define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess #define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess -#define cudaDeviceGetMemPool hipDeviceGetMemPool -#define cudaMemPoolAttrReleaseThreshold hipMemPoolAttrReleaseThreshold -#define cudaMemPoolSetAttribute hipMemPoolSetAttribute -#define cudaMemPool_t hipMemPool_t #define cudaDeviceProp hipDeviceProp_t #define cudaDeviceSynchronize hipDeviceSynchronize #define cudaError_t hipError_t @@ -52,7 +48,6 @@ #define cudaEvent_t hipEvent_t #define cudaEventDestroy hipEventDestroy #define cudaFree hipFree -#define cudaFreeAsync hipFreeAsync #define cudaFreeHost hipHostFree #define cudaGetDevice hipGetDevice #define cudaGetDeviceCount hipGetDeviceCount @@ -60,7 +55,6 @@ #define cudaGetErrorString hipGetErrorString #define cudaGetLastError hipGetLastError #define cudaMalloc hipMalloc -#define cudaMallocFromPoolAsync hipMallocFromPoolAsync #define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault) #define cudaMemcpy hipMemcpy #define cudaMemcpy2DAsync hipMemcpy2DAsync @@ -187,11 +181,11 @@ static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size"); do { \ cudaError_t err_ = (err); \ if (err_ != cudaSuccess) { \ - int dev_id; \ - cudaGetDevice(&dev_id); \ + int id; \ + cudaGetDevice(&id); \ fprintf(stderr, "\nCUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \ cudaGetErrorString(err_)); \ - fprintf(stderr, "current device: %d\n", dev_id); \ + fprintf(stderr, "current device: %d\n", id); \ exit(1); \ } \ } while (0) @@ -201,11 +195,11 @@ static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size"); do { \ cublasStatus_t err_ = (err); \ if (err_ != CUBLAS_STATUS_SUCCESS) { \ - int dev_id; \ - cudaGetDevice(&dev_id); \ + int id; \ + cudaGetDevice(&id); \ fprintf(stderr, "\ncuBLAS error %d at %s:%d: %s\n", \ err_, __FILE__, __LINE__, cublasGetStatusString(err_)); \ - fprintf(stderr, "current device: %d\n", dev_id); \ + fprintf(stderr, "current device: %d\n", id); \ exit(1); \ } \ } while (0) @@ -471,7 +465,6 @@ static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUA #define MAX_STREAMS 8 static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_DEVICES][MAX_STREAMS] = { nullptr }; -static cudaMemPool_t g_cudaMemPools[GGML_CUDA_MAX_DEVICES] = { nullptr }; struct ggml_tensor_extra_gpu { void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors @@ -5780,16 +5773,6 @@ static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) { return ptr; } -static void * ggml_cuda_pool_malloc_async(size_t size, size_t * actual_size, int id, cudaStream_t stream) { - if (g_cudaMemPools[id] == nullptr) { - return ggml_cuda_pool_malloc(size, actual_size); - } - void *ptr; - CUDA_CHECK(cudaMallocFromPoolAsync(&ptr, size, g_cudaMemPools[id], stream)); - *actual_size = size; - return ptr; -} - static void ggml_cuda_pool_free(void * ptr, size_t size) { scoped_spin_lock lock(g_cuda_pool_lock); int id; @@ -5808,13 +5791,6 @@ static void ggml_cuda_pool_free(void * ptr, size_t size) { } -static void ggml_cuda_pool_free_async(void * ptr, size_t actual_size, int id, cudaStream_t stream) { - if (g_cudaMemPools[id] == nullptr) { - return ggml_cuda_pool_free(ptr, actual_size); - } - CUDA_CHECK(cudaFreeAsync(ptr, stream)); -} - void ggml_init_cublas() { static bool initialized = false; @@ -5869,13 +5845,6 @@ void ggml_init_cublas() { // create cublas handle CUBLAS_CHECK(cublasCreate(&g_cublas_handles[id])); CUBLAS_CHECK(cublasSetMathMode(g_cublas_handles[id], CUBLAS_TF32_TENSOR_OP_MATH)); - - // configure memory pool - cudaError_t err = cudaDeviceGetMemPool(&g_cudaMemPools[id], id); - if (err == cudaSuccess) { - size_t treshold = UINT64_MAX; - CUDA_CHECK(cudaMemPoolSetAttribute(g_cudaMemPools[id], cudaMemPoolAttrReleaseThreshold, &treshold)); - } } // configure logging to stdout @@ -6469,7 +6438,7 @@ inline void ggml_cuda_op_mul_mat_cublas( const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type); GGML_ASSERT(to_fp16_cuda != nullptr); size_t ne = row_diff*ne00; - src0_as_f16 = (half *) ggml_cuda_pool_malloc_async(ne * sizeof(half), &src0_as, id, stream); + src0_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src0_as); to_fp16_cuda(src0_dd_i, src0_as_f16, ne, stream); } const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16; @@ -6480,12 +6449,13 @@ inline void ggml_cuda_op_mul_mat_cublas( const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type); GGML_ASSERT(to_fp16_cuda != nullptr); size_t ne = src1_ncols*ne10; - src1_as_f16 = (half *) ggml_cuda_pool_malloc_async(ne * sizeof(half), &src1_as, id, stream); + src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src1_as); to_fp16_cuda(src1_ddf_i, src1_as_f16, ne, stream); } const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddq_i : src1_as_f16; - size_t dst_f16_as = 0; - half * dst_f16 = (half *) ggml_cuda_pool_malloc_async(row_diff*src1_ncols * sizeof(half), &dst_f16_as, id, stream); + + size_t dst_as = 0; + half * dst_f16 = (half *) ggml_cuda_pool_malloc(row_diff*src1_ncols * sizeof(half), &dst_as); const half alpha_f16 = 1.0f; const half beta_f16 = 0.0f; @@ -6503,15 +6473,14 @@ inline void ggml_cuda_op_mul_mat_cublas( const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); to_fp32_cuda(dst_f16, dst_dd_i, row_diff*src1_ncols, stream); - if (dst_f16_as != 0) { - ggml_cuda_pool_free_async(dst_f16, dst_f16_as, id, stream); - } + ggml_cuda_pool_free(dst_f16, dst_as); if (src0_as != 0) { - ggml_cuda_pool_free_async(src0_as_f16, src0_as, id, stream); + ggml_cuda_pool_free(src0_as_f16, src0_as); } + if (src1_as != 0) { - ggml_cuda_pool_free_async(src1_as_f16, src1_as, id, stream); + ggml_cuda_pool_free(src1_as_f16, src1_as); } } else { @@ -6521,7 +6490,7 @@ inline void ggml_cuda_op_mul_mat_cublas( if (src0->type != GGML_TYPE_F32) { const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type); GGML_ASSERT(to_fp32_cuda != nullptr); - src0_ddq_as_f32 = (float *) ggml_cuda_pool_malloc_async(row_diff*ne00 * sizeof(float), &src0_as, id, stream); // NOLINT + src0_ddq_as_f32 = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_as); // NOLINT to_fp32_cuda(src0_dd_i, src0_ddq_as_f32, row_diff*ne00, stream); } const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32; @@ -6538,7 +6507,7 @@ inline void ggml_cuda_op_mul_mat_cublas( &beta, dst_dd_i, ldc)); if (src0_as != 0) { - ggml_cuda_pool_free_async(src0_ddq_as_f32, src0_as, id, stream); + ggml_cuda_pool_free(src0_ddq_as_f32, src0_as); } } @@ -6961,22 +6930,21 @@ static void ggml_cuda_op_mul_mat( src0_dd[id] = (char *) src0_extra->data_device[id]; } else { const size_t size_src0_ddq = split ? (row_high[id]-row_low[id])*ne00 * src0_ts/src0_bs : ggml_nbytes(src0); - src0_dd[id] = (char *) ggml_cuda_pool_malloc_async(ggml_nbytes(src0), &src0_as[id], id, stream); + src0_dd[id] = (char *) ggml_cuda_pool_malloc(ggml_nbytes(src0), &src0_as[id]); } if (src1_on_device && src1_is_contiguous) { src1_ddf[id] = (float *) src1_extra->data_device[id]; } else { - src1_ddf[id] = (float *) ggml_cuda_pool_malloc_async(ggml_nbytes(src1), &src1_asf[id], id, stream); + src1_ddf[id] = (float *) ggml_cuda_pool_malloc(ggml_nbytes(src1), &src1_asf[id]); } if (convert_src1_to_q8_1) { - const size_t size_dst_ddq = nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs; - src1_ddq[id] = (char *) ggml_cuda_pool_malloc_async(size_dst_ddq, &src1_asq[id], id, stream); + src1_ddq[id] = (char *) ggml_cuda_pool_malloc(nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs, &src1_asq[id]); if (src1_on_device && src1_is_contiguous) { quantize_row_q8_1_cuda(src1_ddf[id], src1_ddq[id], ne10, nrows1, src1_padded_col_size, stream); - // CUDA_CHECK(cudaGetLastError()); + CUDA_CHECK(cudaGetLastError()); } } @@ -6984,7 +6952,7 @@ static void ggml_cuda_op_mul_mat( dst_dd[id] = (float *) dst_extra->data_device[id]; } else { const size_t size_dst_ddf = split ? (row_high[id]-row_low[id])*ne1*sizeof(float) : ggml_nbytes(dst); - dst_dd[id] = (float *) ggml_cuda_pool_malloc_async(size_dst_ddf, &dst_as[id], id, stream); + dst_dd[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_as[id]); } } @@ -7110,6 +7078,24 @@ static void ggml_cuda_op_mul_mat( } } + for (int64_t id = 0; id < g_device_count; ++id) { + CUDA_CHECK(ggml_cuda_set_device(id)); + + // free buffers again when done + if (src0_as[id] > 0) { + ggml_cuda_pool_free(src0_dd[id], src0_as[id]); + } + if (src1_asf[id] > 0) { + ggml_cuda_pool_free(src1_ddf[id], src1_asf[id]); + } + if (src1_asq[id] > 0) { + ggml_cuda_pool_free(src1_ddq[id], src1_asq[id]); + } + if (dst_as[id] > 0) { + ggml_cuda_pool_free(dst_dd[id], dst_as[id]); + } + } + // main device waits for all other devices to be finished if (split && g_device_count > 1) { int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE; @@ -7127,21 +7113,6 @@ static void ggml_cuda_op_mul_mat( CUDA_CHECK(ggml_cuda_set_device(g_main_device)); CUDA_CHECK(cudaDeviceSynchronize()); } - - for (int64_t id = 0; id < g_device_count; ++id) { - if (src0_as[id] > 0) { - ggml_cuda_pool_free_async(src0_dd[id], src0_as[id], id, g_cudaStreams[id][0]); - } - if (src1_asf[id] > 0) { - ggml_cuda_pool_free_async(src1_ddf[id], src1_asf[id], id, g_cudaStreams[id][0]); - } - if (src1_asq[id] > 0) { - ggml_cuda_pool_free_async(src1_ddq[id], src1_asq[id], id, g_cudaStreams[id][0]); - } - if (dst_as[id] > 0) { - ggml_cuda_pool_free_async(dst_dd[id], dst_as[id], id, g_cudaStreams[id][0]); - } - } } static void ggml_cuda_repeat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { @@ -7328,11 +7299,11 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const GGML_ASSERT(to_fp16_cuda != nullptr); size_t src1_as = 0; - half * src1_as_f16 = (half *) ggml_cuda_pool_malloc_async(ne1 * sizeof(half), &src1_as, id, main_stream); + half * src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne1 * sizeof(half), &src1_as); to_fp16_cuda(src1_ddf, src1_as_f16, ne1, main_stream); size_t dst_as = 0; - half * dst_f16 = (half *) ggml_cuda_pool_malloc_async(ne * sizeof(half), &dst_as, id, main_stream); + half * dst_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &dst_as); GGML_ASSERT(ne12 % ne02 == 0); GGML_ASSERT(ne13 % ne03 == 0); @@ -7386,8 +7357,8 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const size_t ptrs_src_s = 0; size_t ptrs_dst_s = 0; - ptrs_src = (const void **) ggml_cuda_pool_malloc_async(2*ne23*sizeof(void *), &ptrs_src_s, id, main_stream); - ptrs_dst = ( void **) ggml_cuda_pool_malloc_async(1*ne23*sizeof(void *), &ptrs_dst_s, id, main_stream); + ptrs_src = (const void **) ggml_cuda_pool_malloc(2*ne23*sizeof(void *), &ptrs_src_s); + ptrs_dst = ( void **) ggml_cuda_pool_malloc(1*ne23*sizeof(void *), &ptrs_dst_s); dim3 block_dims(ne13, ne12); k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>( @@ -7400,6 +7371,7 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const dst->nb[2], dst->nb[3], r2, r3); CUDA_CHECK(cudaGetLastError()); + CUBLAS_CHECK( cublasGemmBatchedEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N, ne01, ne11, ne10, @@ -7411,22 +7383,19 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const CUBLAS_GEMM_DEFAULT_TENSOR_OP)); if (ptrs_src_s != 0) { - ggml_cuda_pool_free_async(ptrs_src, ptrs_src_s, id, main_stream); + ggml_cuda_pool_free(ptrs_src, ptrs_src_s); } if (ptrs_dst_s != 0) { - ggml_cuda_pool_free_async(ptrs_dst, ptrs_dst_s, id, main_stream); + ggml_cuda_pool_free(ptrs_dst, ptrs_dst_s); } } #endif const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream); - if (src1_as != 0) { - ggml_cuda_pool_free_async(src1_as_f16, src1_as, id, main_stream); - } - if (dst_as != 0) { - ggml_cuda_pool_free_async(dst_f16, dst_as, id, main_stream); - } + + ggml_cuda_pool_free(src1_as_f16, src1_as); + ggml_cuda_pool_free(dst_f16, dst_as); } static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {