forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ir.h
1841 lines (1627 loc) · 53 KB
/
ir.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#pragma once
#include <torch/csrc/jit/ir/attributes.h>
#include <torch/csrc/jit/ir/graph_node_list.h>
#include <torch/csrc/jit/ir/named_value.h>
#include <torch/csrc/jit/ir/scope.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <torch/csrc/Export.h>
#include <torch/csrc/utils/python_stub.h>
#include <torch/csrc/utils/schema_info.h>
#include <ATen/Utils.h>
#include <ATen/core/Tensor.h>
#include <ATen/core/dynamic_type.h>
#include <ATen/core/enum_type.h>
#include <ATen/core/functional.h>
#include <ATen/core/interned_strings.h>
#include <ATen/core/ivalue.h>
#include <ATen/core/jit_type.h>
#include <c10/util/ArrayRef.h>
#include <c10/util/Exception.h>
#include <c10/util/Optional.h>
#include <functional>
#include <iosfwd>
#include <unordered_set>
#include <vector>
// Forward declare, the real meat is in python_ir.cpp
template <class T>
class THPPointer;
using THPObjectPtr = THPPointer<PyObject>;
using pyobj_list = std::vector<THPObjectPtr>;
namespace torch {
namespace jit {
namespace utils {
TORCH_API std::string getNodesModuleHierarchy(const Node& n);
} // namespace utils
class AliasDb;
using ::c10::Argument;
using ::c10::FunctionSchema;
using ::c10::Symbol;
using ::c10::ivalue::Shared;
using ::c10::IValue;
using ::c10::ivalue::Future;
using ::c10::ivalue::ConstantString;
#define C10_USING(T) using ::c10::T;
C10_FORALL_TYPES(C10_USING)
#undef C10_USING
#define C10_USING(T) using ::c10::T##Ptr;
C10_FORALL_TYPES(C10_USING)
#undef C10_USING
using ::c10::Type;
using ::c10::TypeEnv;
using ::c10::TypePtr;
using ::c10::getTypePtr;
using ::c10::MatchTypeReturn;
using ::c10::TypeKind;
using ::c10::fmap;
namespace prim {
using namespace ::c10::prim;
}
namespace attr {
using namespace ::c10::attr;
}
namespace aten {
using namespace ::c10::aten;
}
namespace cuda {
#if !defined(USE_ROCM)
using namespace ::c10::cuda;
#endif
} // namespace cuda
struct Function;
struct GraphFunction;
struct MatchedSchema;
// A Graph represents one "function" of computation.
// It uses a simple ownership model where the graph owns all the nodes inside
// it. All references inside the graph are raw pointers. Destroying the Graph
// will invalidate any pointers to nodes in the graph.
struct Graph;
// Node is the base class of the IR graph. It represents one computation
// and dependencies on a list of Values. The "prim-ops", so to speak.
struct Node;
// A Value represents an input or output to node that is either a
// Tensor or an opaque Handle object, as determined by type().
struct Value;
TORCH_API std::ostream& operator<<(std::ostream& out, const Graph& g);
TORCH_API std::ostream& operator<<(std::ostream& out, const Node& n);
// A list of nodes, with inputs and outputs
struct Block;
// Each use is represented by this type, see 'Node::uses()'
// 'user' is the consumer of the value, 'offset' is the index into
// 'user's input this where the producers will be found.
struct Use {
Use(Node* user, size_t offset) : user(user), offset(offset) {}
Node* user;
size_t offset;
bool operator==(const Use& b) {
return user == b.user && offset == b.offset;
}
};
// Note [User node does not uniquely identify use]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// A while back, we wrote some code manipulating uses that looked like this:
//
// for (auto& use : used_val->uses_) {
// if (use.user == this_node) {
// use.offset += 1;
// break;
// }
// }
//
// This code is trying to find a particular use (our node's use) to update it.
// However, it's wrong: there may be *multiple* uses of a value %x in a node,
// as might be the case in this IR:
//
// %y = Add %x %x
//
// In this case, there are two uses of %x whose user is the node 'Add %x %x'.
// So, "use induced by this node" is not a well-formed concept.
//
// If you are looking for "use induced by an input", it's best to use
// findUseForInput() to get it.
// the list types are intentionally simple, but we type-def
// them here so if we need to change them, refactoring will be easier
using node_list = std::vector<Node*>;
using value_list = std::vector<Value*>;
using use_list = std::vector<Use>;
template <typename T>
using ArrayRef = at::ArrayRef<T>;
using NodeKind = Symbol;
using topo_position_t = int64_t;
using ValueSet = std::unordered_set<const Value*>;
struct OperatorSet;
template <typename T>
struct OperatorMap;
// This is a wrapper to allow invalidating the Python object
// safely when the C++ object for a Node/Value/Block is deleted
// like much of graph, it isn't safe for different threads to
// access the same graph
template <typename T>
struct Wrap {
explicit Wrap(T* p) : elem(p), clear_cb(nullptr) {}
void clear() {
if (clear_cb) {
clear_cb(elem);
}
elem = nullptr;
}
T* elem;
void (*clear_cb)(void*);
};
struct Value {
AT_DISALLOW_COPY_AND_ASSIGN(Value);
Value(Node* node_, size_t offset_);
private:
friend struct Node;
friend struct Graph;
Node* node_;
size_t offset_;
size_t unique_ = 0; // unique id
use_list uses_;
std::string unique_name_;
TypePtr type_;
// a managing wrapper for Python to allow invalidation
std::shared_ptr<Wrap<Value>> wrap_;
public:
Value* setType(TypePtr type);
TORCH_API void inferTypeFrom(const at::Tensor& output);
TORCH_API void inferTypeFrom(
const c10::intrusive_ptr<c10::ivalue::Object>& output);
const TypePtr& type() const {
AT_ASSERT(type_ != nullptr);
return type_;
}
bool requires_grad() const {
return type()->requires_grad();
}
bool isCompleteTensor() const {
if (auto pt = type()->cast<TensorType>()) {
return pt->isComplete();
}
return false;
}
TORCH_API bool mustBeNone() const;
TORCH_API bool mustNotBeNone() const;
size_t unique() const {
return unique_;
}
bool hasDebugName() const {
return !unique_name_.empty();
}
static bool isValidName(const std::string& name);
TORCH_API Value* setDebugName(const std::string& name);
std::string debugName() const {
if (hasDebugName()) {
return unique_name_;
}
return c10::to_string(unique());
}
TORCH_API std::string debugNameBase() const;
Node* node() {
return node_;
}
size_t offset() const {
return offset_;
}
void setOffset(size_t offset) {
offset_ = offset;
}
const Node* node() const {
return node_;
}
/**
* @warning NEVER pass raw pointer of smart pointer managed Graph to Python.
* Check #87343 for details.
*/
Graph* owningGraph();
const Graph* owningGraph() const;
// TODO: make this more const correct
const use_list& uses() const {
return uses_;
}
bool hasUses() const {
return !uses().empty();
}
TORCH_API void replaceFirstUseWith(Value* newValue);
// Replaces all uses of this value with 'newValue'.
//
// Given: %3 = f(%1, %2)
// %4 = g(%3)
// %5 = h(%3, %3)
// Execute: %3.replaceAllUsesWith(%6)
// Result: %3 = f(%1, %2)
// %4 = g(%6)
// %5 = h(%6, %6)
TORCH_API void replaceAllUsesWith(Value* newValue);
// Replaces all uses of this value with 'newValue' after 'node'.
// Given: %3 = f(%1, %2)
// %4 = g(%3)
// %5 = inplace_(%3)
// %6 = h(%3, %3)
// Execute: %3.replaceAllUsesAfterNodeWith(%5.node(), %5)
// Result: %3 = f(%1, %2)
// %4 = g(%3)
// %5 = inplace_(%3)
// %6 = h(%5, %5)
// XXX: does not check scoping legality, consider using
// replaceAllUsesDominatedByNodeWith
TORCH_API void replaceAllUsesAfterNodeWith(const Node* node, Value* newValue);
// Replaces all uses of this value with 'newValue' that are dominated by
// 'node'. Given:
// x = op(...).
// if cond:
// z = foo(..)
// bar(x)
// else:
// print(x)
// x.replaceAllUsesDominatedByNodeWith(foo, z) would replace bar(x)
// but not print(x) because print is not dominated by foo.
// replaceAllUsesAfterNode does not check domination, so in this example
// it would produce invalid IR.
TORCH_API void replaceAllUsesDominatedByNodeWith(
const Node* node,
Value* newValue);
TORCH_API Value* copyMetadata(Value* from);
TORCH_API std::shared_ptr<Wrap<Value>> wrap() {
if (!wrap_) {
wrap_ = std::make_shared<Wrap<Value>>(this);
}
return wrap_;
}
virtual ~Value() {
if (wrap_) {
wrap_->clear();
}
}
};
struct TORCH_API Node {
AT_DISALLOW_COPY_AND_ASSIGN(Node);
friend struct Graph;
friend struct Block;
friend struct Value;
friend graph_node_list;
friend const_graph_node_list;
friend graph_node_list_iterator;
friend const_graph_node_list_iterator;
private:
const NodeKind kind_;
std::vector<Value*> inputs_;
std::vector<Value*> outputs_;
// subblocks
std::vector<Block*> blocks_;
Graph* graph_;
Block* owning_block_;
c10::optional<SourceRange> source_range_;
ScopePtr scope_;
c10::optional<InlinedCallStackPtr> callstack_;
// Assumes FunctionSchemas are persistent, so we don't manage their lifetime.
// This field is effective a cache that's populated on attribute lookups and
// invalidated every time we perform an operation that could potentially
// change the schema. note: mutable because schema_ is effectively a cache
mutable const Operator* op_;
topo_position_t topo_position_ = 0;
// a managing wrapper for Python to allow invalidation
std::shared_ptr<Wrap<Node>> wrap_;
// Stores the full schema name, if the operator is historic
// When the operator is deprecated or the name of the operator
// is changed, we need to rely on this name
// to retrieve old schemas to successfully apply upgraders
// for this operator.
c10::optional<std::string> historic_schema_name_ = c10::nullopt;
protected:
Node(Graph* graph_, NodeKind kind_); // defined after graph
public:
// Each Node but Return/Param Nodes are associated with exactly one
// place in the Node list of the Graph. The Graph itself is a circular
// doubly-linked list. The Return Node is used as the sentinel for the
// "beginning"/"end" of the list. This means that you can tell when
// you've traversed the entire list without means worrying about null
// pointers. `next_in_graph[0]` is the pointer to the next Node, while
// `next_in_graph[1]` is the pointer to the previous Node. The
// linked list is implemented as an array to allow the same iterator
// class for forward and reversed Node lists. Taken together, this
// list also represents a topological sort of the Nodes in the Graph.
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,cppcoreguidelines-non-private-member-variables-in-classes,modernize-avoid-c-arrays)
Node* next_in_graph[2] = {nullptr, nullptr};
std::shared_ptr<Wrap<Node>> wrap() {
if (!wrap_) {
wrap_ = std::make_shared<Wrap<Node>>(this);
}
return wrap_;
}
const c10::optional<std::string> getHistoricSchemaName() {
return historic_schema_name_;
}
void setHistoricSchemaName(const std::string& name) {
historic_schema_name_ = name;
}
Node*& next() {
return next_in_graph[kNextDirection];
}
Node*& prev() {
return next_in_graph[kPrevDirection];
}
Node* const& next() const {
return next_in_graph[kNextDirection];
}
Node* const& prev() const {
return next_in_graph[kPrevDirection];
}
NodeKind kind() const {
return kind_;
}
Node* setSourceRange(SourceRange r) {
source_range_ = std::move(r);
return this;
}
SourceRange sourceRange() const;
/**
* @warning NEVER pass raw pointer of smart pointer managed Graph to Python.
* Check #87343 for details.
*/
Graph* owningGraph() {
return graph_;
}
const Graph* owningGraph() const {
return graph_;
}
Block* owningBlock() {
return owning_block_;
}
const Block* owningBlock() const {
return owning_block_;
}
ScopePtr scope() {
return scope_;
}
void setScope(ScopePtr scope) {
scope_ = std::move(scope);
}
std::string scopeName() const {
if (!scope_) {
return "";
}
return scope_->namesFromRoot();
}
// Copies the source range, scope and callstack from another node.
Node* copyMetadata(Node* from) {
this->setSourceRange(from->sourceRange());
this->setScope(from->scope());
if (auto cs = from->callstack()) {
this->setCallStack(*cs);
}
return this;
}
c10::optional<InlinedCallStackPtr> callstack() const {
return callstack_;
}
void setCallStack(InlinedCallStackPtr cs) {
callstack_ = cs;
}
// NB: This returns an ArrayRef; that means that it will
// get invalidated if you resize inputs (e.g., using addInput)
// We can't return a std::vector<Node*>& because there's no
// way to soundly cast to std::vector<const Node*> (an insane
// implementation of std::vector could make this representationally
// different.)
at::ArrayRef<Value*> inputs() {
return inputs_;
}
at::ArrayRef<const Value*> inputs() const {
// Vectors are not convertible in const-ness of elements, but
// raw pointers are.
return {inputs_.data(), inputs_.size()};
}
// NB: This returns an ArrayRef; that means that it will
// get invalidated if you resize inputs (e.g., using addInput)
// We can't return a std::vector<Node*>& because there's no
// way to soundly cast to std::vector<const Node*> (an insane
// implementation of std::vector could make this representationally
// different.)
at::ArrayRef<Value*> outputs() {
return outputs_;
}
at::ArrayRef<const Value*> outputs() const {
// Vectors are not convertible in const-ness of elements, but
// raw pointers are.
return {outputs_.data(), outputs_.size()};
}
Value* output(size_t i) const {
return outputs_.at(i);
}
bool hasUses() const {
for (auto o : outputs()) {
if (!o->uses().empty()) {
return true;
}
}
return false;
}
void replaceAllUsesWith(Node* n);
// replaces `this` with a new node with the same inputs and outputs
// but a new node symbol. does not destroy `this`
Node* replaceWithNewSymbol(Symbol new_symbol);
// Checks if this node is dominated by `dominator` which means that
// `dominator` will always be executed before `this` and `dominator`
// is in scope of `this.
bool isDominatedBy(const Node* dominator) const;
// lots of things like chunk have a single input or single output, so we have
// a helper to make accessing it easier
Value* input() {
AT_ASSERT(inputs_.size() == 1);
return inputs_.at(0);
}
Value* output() {
AT_ASSERT(outputs_.size() == 1);
return outputs_.at(0);
}
const Value* output() const {
AT_ASSERT(outputs_.size() == 1);
return outputs_.at(0);
}
const Value* input() const {
AT_ASSERT(inputs_.size() == 1);
return inputs_.at(0);
}
// Access a particular input. This is a checked index.
Value* input(size_t i) const {
return inputs_.at(i);
}
bool hasNamedInput(const std::string& unqualName) const;
Value* namedInput(const std::string& unqualName) const;
Value* namedInput(Symbol name) const;
c10::optional<IValue> get(Symbol name) const;
template <typename T>
c10::optional<T> get(Symbol name) const {
if (auto v = get(name)) {
return v->template to<T>();
}
return c10::nullopt;
}
// Returns true if the value of input name is statically known
bool is_constant(Symbol name) const {
return static_cast<bool>(get(name));
}
bool mustBeNone() const;
bool isNondeterministic() const;
bool hasSideEffects() const;
// instructions lowered by the interpreter and not run in the optimized graph
bool notExecutedOp() const {
return kind_ == prim::Constant || kind_ == prim::profile ||
kind_ == prim::profile_ivalue;
}
// Graphs
// Note [Topological invariant]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// We always maintain an up-to-date topological ordering of all nodes via
// the next()/prev() links. All transformations to graphs must preserve
// this topological ordering: for example, it is only valid to 'addInput'
// with an input which is topologically before the current node.
//
// Usually, it is obvious whether or not topological order is maintained;
// for example, if you are adding nodes to the end of the topsort, it's
// impossible for them to refer to inputs that are not in the topsort.
// If it is not obvious, please comment accordingly.
// Add 'node' as an input to 'this' at the end of existing
// arguments. Returns the added node for ease of chaining.
//
// Given: %3 = f(%1, %2)
// Execute: %3.addInput(%4)
// Result: %3 = f(%1, %2, %4)
Value* addInput(Value* value);
// Add 'value' as an input to 'this' at the specified position in the
// arguments. Returns the added value for ease of chaining.
Value* insertInput(size_t i, Value* value);
// Replace the input of 'this' at position 'i' with
// 'newValue', returning the old node.
//
// Given: %3 = f(%1, %2)
// Execute: %3.replaceInput(1, %4)
// Result: %3 = f(%1, %4)
Value* replaceInput(size_t i, Value* newValue);
// Replace all occurrences of 'from' in the inputs of this
// node with 'to'. Corresponds to llvm's replaceUsesOfWith.
//
// Given: %3 = f(%1, %2, %1)
// Execute: %3.replaceInputWith(%1, %4)
// Result: %3 = f(%4, %2, %4)
void replaceInputWith(Value* from, Value* to);
Value* addOutput();
Value* insertOutput(size_t i);
void eraseOutput(size_t i);
Block* addBlock();
void eraseBlock(size_t i);
// Each Node can have a list of subblocks. These are used to define structured
// nested control flow operators such as If and Loop.
// The meaning of a block is specific to the kind of node it is in, but
// all blocks share these semantics:
// * Nested lexical scoping: If a node 'Parent' has a subblock which contains
// a node 'Child', Child can use any value that was in scope for the Parent
// node in addition to any values defined before 'Child' in the subblock.
// * The list of inputs to the block are in scope for the duration of the
// block
// * the outputs of the Parent node are not in scope for the subblocks
// Typically the inputs to a block that represents control flow act as
// as the equivalents phi-nodes in standard SSA form,
// defining a new Value to represent any term that has multiple
// definitions depending on how control flowed. Outputs of the node containing
// control flow serve a similiar purpose defining new values for variables
// that would have different definitions depending on which way control
// flowed.
at::ArrayRef<Block*> blocks() {
return blocks_;
}
at::ArrayRef<const Block*> blocks() const {
// Vectors are not convertible in const-ness of elements, but
// raw pointers are.
return {blocks_.data(), blocks_.size()};
}
// Is 'this' before 'n' in the topological order?
bool isBefore(const Node* n) const;
// Is 'this' after 'n' in the topological order?
bool isAfter(const Node* n) const;
// Insert unattached 'this' node before 'n' in the topological order.
// Returns this (for chaining).
//
// Given: %3 = f(%1, %2)
// %4 = g(%3)
// and unattached: %5 = h(%1)
// Execute: %5.insertBefore(%4)
// Result: %3 = f(%1, %2)
// %5 = h(%1)
// %4 = g(%3)
Node* insertBefore(Node* n);
// Insert unattached 'this' node after 'n' in the topological order.
// Returns this (for chaining).
//
// Given: %3 = f(%1, %2)
// %4 = g(%3)
// and unattached: %5 = h(%1)
// Execute: %5.insertAfter(%4)
// Result: %3 = f(%1, %2)
// %4 = g(%3)
// %5 = h(%1)
Node* insertAfter(Node* n);
// Move 'this' (already in the graph) after 'n' in the topological order.
//
// NOTE: Does not check that value dependencies are preserved, see
// AliasDb::moveAfterTopologicallyValid
//
// Given: %2 = f(%1)
// %3 = g(%1)
// Execute: %2.moveAfter(%3)
// Result: %3 = g(%1)
// %2 = f(%1)
//
void moveAfter(Node* n);
// Move a node 'n' (already in the graph) before 'this' in the topological
// order.
//
// NOTE: Does not check that value dependencies are preserved, see
// AliasDb::moveBeforeTopologicallyValid
//
// Given: %2 = f(%1)
// %3 = g(%1)
// Execute: %3.moveBefore(%2)
// Result: %3 = g(%1)
// %2 = f(%1)
void moveBefore(Node* n);
// Remove the input at 'i' from this node.
//
// WARNING: This is O(n) in the number of inputs, so avoid repeatedly calling
// removeInput.
//
// Given: %3 = f(%1, %2)
// Execute: %3.removeInput(1)
// Result: %3 = f(%1)
void removeInput(size_t i);
// Remove all inputs from a node.
//
// Given: %3 = f(%1, %2)
// Execute: %3.removeAllInputs()
// Result: %3 = f()
void removeAllInputs();
// Remove all outputs from a node.
//
// Given: %1, %2 = f()
// Execute:removeAllInputs()
// Result: = f()
void removeAllOutputs();
// Rearrange the ordering of inputs or outputs of a node
// Given: %3 = f(%1, %2)
// Execute: %3.permuteInputs({1, 0})
// Result: %3 = f(%2, %1)
// Each index must appear exactly once
void permuteInputs(const std::vector<size_t>& new_inputs);
void permuteOutputs(const std::vector<size_t>& new_inputs);
// iterators of the node list starting at this node
// useful for resuming a search starting at this node
inline graph_node_list_iterator iterator() {
return {this, 0};
}
inline graph_node_list_iterator reverseIterator() {
return iterator().reverse();
}
inline const_graph_node_list_iterator iterator() const {
return {this, 0};
}
inline const_graph_node_list_iterator reverseIterator() const {
return iterator().reverse();
}
// Remove 'this' from the instruction list and deallocate it.
//
// Invariant: no outputs of 'this' may have any uses.
//
// Given: %2 = f(%1)
// %3 = g(%1)
// Execute: %2.destroy()
// Result: %3 = g(%1)
void destroy();
// Dynamically cast this node to the subclass indicated by the
// template variable, returning nullptr if the cast is invalid..
//
// Example usage: if(auto s = n.cast<Select>()) { ... }
template <typename T>
T* cast() {
if (T::Kind == kind()) {
return static_cast<T*>(this);
}
return nullptr;
}
template <typename T>
const T* cast() const {
if (T::Kind == kind()) {
return static_cast<const T*>(this);
}
return nullptr;
}
template <typename T>
T* expect() {
TORCH_CHECK(
T::Kind == kind(),
"expected a ",
T::Kind.toDisplayString(),
" but found a ",
kind().toDisplayString());
return static_cast<T*>(this);
}
bool matches(const FunctionSchema& schema) const;
// XXX: this function is meant to be used with string literals only!
bool matches(
const char* signature_literal,
at::ArrayRef<Symbol> const_inputs = {}) const;
bool isMemberOf(const OperatorSet& os) const;
template <typename T>
bool isMemberOf(const OperatorMap<T>& om) const {
auto it = om.map.find(kind());
if (it == om.map.end()) {
return false;
}
for (auto& op : it->second) {
if (matches(op.first->schema())) {
return true;
}
}
return false;
}
const FunctionSchema& schema() const;
const FunctionSchema* maybeSchema() const;
const Operator& getOperator() const;
Operation getOperation() const;
const Operator* maybeOperator() const;
void dump() const;
std::ostream& print(
std::ostream& out,
size_t level,
std::vector<const Node*>* groups,
bool print_source_locations = true,
bool print_attributes = true,
bool print_scopes = true,
bool print_body = true) const;
virtual ~Node() {
if (wrap_) {
wrap_->clear();
}
}
// Methods for accessing attributes
Node* copyAttributes(const Node& rhs) {
values_.clear();
for (const AVPtr& i : rhs.values_) {
values_.push_back(i->clone());
}
return this;
}
bool hasAttribute(Symbol name) const {
AT_ASSERT(name.is_attr());
return findAttr(name, false) != values_.end();
}
bool hasAttributeS(const std::string& name) const {
return hasAttribute(Symbol::attr(name));
}
AttributeKind kindOf(Symbol name) const {
AT_ASSERT(name.is_attr());
return (*findAttr(name, true))->kind();
}
AttributeKind kindOfS(const std::string& name) const {
return kindOf(Symbol::attr(name));
}
Node* removeAttribute(Symbol name) {
AT_ASSERT(name.is_attr());
values_.erase(findAttr(name, true));
return this;
}
Node* removeAttributeS(const std::string& name) {
return removeAttribute(Symbol::attr(name));
}
bool hasAttributes() const {
return !values_.empty();
}
size_t numAttributes() const {
return values_.size();
}
// The names are returned in order, since name actually is the index.
std::vector<Symbol> attributeNames() const {
std::vector<Symbol> names;
names.reserve(values_.size());
for (const AVPtr& a : values_) {
names.push_back(a->name);
}
return names;
}
std::vector<const char*> attributeNamesS() const {
std::vector<const char*> names;
names.reserve(values_.size());
for (const AVPtr& a : values_) {
names.push_back(a->name.toUnqualString());
}
return names;
}
#define CREATE_ACCESSOR(Kind, method) \
Node* method##_(Symbol name, Kind##Attr::ConstructorType v) { \
return setAttr<Kind##Attr>( \
name, std::forward<Kind##Attr::ConstructorType>(v)); \
} \
const Kind##Attr::ValueType& method(Symbol name) const { \
return getAttr<Kind##Attr>(name); \
}
CREATE_ACCESSOR(Float, f)
CREATE_ACCESSOR(Complex, c)
CREATE_ACCESSOR(Floats, fs)
CREATE_ACCESSOR(ComplexVals, cs)
CREATE_ACCESSOR(String, s)
CREATE_ACCESSOR(Strings, ss)
CREATE_ACCESSOR(Int, i)
CREATE_ACCESSOR(Ints, is)
CREATE_ACCESSOR(Graph, g)
CREATE_ACCESSOR(Graphs, gs)
CREATE_ACCESSOR(Type, ty)
CREATE_ACCESSOR(Types, tys)
CREATE_ACCESSOR(IValue, ival)
#undef CREATE_ACCESSOR
// Our Graphs are not very const-correct, so we need to allow returning
// non-const references too
GraphAttr::ValueType& g(Symbol name) {
return getAttr<GraphAttr>(name);
}
// does not use CREATE_ACCESSOR because we need additional asserts
Node* t_(Symbol name, TensorAttr::ConstructorType v) {
return setAttr<TensorAttr>(
name, std::forward<TensorAttr::ConstructorType>(v));
}
const TensorAttr::ValueType& t(Symbol name) const {
return getAttr<TensorAttr>(name);
}
Node* ts_(Symbol name, TensorsAttr::ConstructorType v) {
return setAttr<TensorsAttr>(
name, std::forward<TensorsAttr::ConstructorType>(v));
}
const TensorsAttr::ValueType& ts(Symbol name) const {
return getAttr<TensorsAttr>(name);
}
Block* findCommonAncestorBlockWith(Node* n);
size_t blocksFromGraphBlock();
private:
void printAttrValue(std::ostream& out, const Symbol& name) const;
void printAttributes(std::ostream& out, bool ignore_subgraph) const;
template <typename T>
Node* setAttr(Symbol name, typename T::ConstructorType v) {
AT_ASSERT(name.is_attr());
auto it = findAttr(name, false);
auto nv = AVPtr(new T(name, std::forward<typename T::ConstructorType>(v)));
// NOLINTNEXTLINE(bugprone-branch-clone)
if (it == values_.end()) {
values_.push_back(std::move(nv));
} else {
*it = std::move(nv);
}
return this;
}
template <typename T>
typename T::ValueType& getAttr(Symbol name) const {
AT_ASSERT(name.is_attr());
auto it = findAttr(name, true);
auto* child = dynamic_cast<T*>(it->get());
if (child == nullptr) {
throw IRAttributeError(name, true);
}
return child->value();
}
using AVPtr = AttributeValue::Ptr;
// NB: For determinism, we use a vector rather than a hash map. This does
// mean that lookups are O(n), so you shouldn't use Attributes to store
// a big pile of messages.
std::vector<AVPtr> values_;
std::vector<AVPtr>::iterator findAttr(Symbol name, bool required) {
AT_ASSERT(name.is_attr());
auto it = std::find_if(values_.begin(), values_.end(), [&](const AVPtr& v) {
return v->name == name;
});
if (required && it == values_.end()) {
throw IRAttributeError(name, false);
}
AT_ASSERT(!required || it != values_.end());
return it;
}
std::vector<AVPtr>::const_iterator findAttr(Symbol name, bool required)
const {
AT_ASSERT(name.is_attr());
auto it = std::find_if(values_.begin(), values_.end(), [&](const AVPtr& v) {
return v->name == name;
});
if (required && it == values_.end()) {
throw IRAttributeError(name, false);
}
AT_ASSERT(!required || it != values_.end());
return it;
}
enum class MoveSide { BEFORE, AFTER };
bool isBeforeOrAfter(const Node* n, MoveSide moveSide) const;
std::pair<Value*, const Argument&> findInput(Symbol name);
// Lookup iterator in use list of _input i_ that corresponds to its use of
// _this_
use_list::iterator findUseForInput(size_t i);
// remove the use of input i, this sets input i to nullptr, but
// is only used internally to Node before setting it to a new value
// or erasing the entry from the list.
Value* dropInput(size_t i);
bool inBlockList() const {
if (next() == nullptr) {
AT_ASSERT(prev() == nullptr);
}