forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
module.cpp
640 lines (567 loc) · 21.4 KB
/
module.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
#include <ATen/core/symbol.h>
#include <ATen/record_function.h>
#include <c10/util/Exception.h>
#include <c10/util/StringUtil.h>
#include <c10/util/irange.h>
#include <torch/csrc/autograd/generated/variable_factories.h>
#include <torch/csrc/jit/api/function_impl.h>
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/frontend/error_report.h>
#include <torch/csrc/jit/frontend/ir_emitter.h>
#include <torch/csrc/jit/frontend/schema_matching.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/freeze_module.h>
#include <torch/csrc/jit/passes/frozen_conv_add_relu_fusion.h>
#include <torch/csrc/jit/passes/frozen_graph_optimizations.h>
#include <torch/csrc/jit/passes/frozen_linear_transpose.h>
#include <torch/csrc/jit/passes/frozen_ops_to_mkldnn.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <iostream>
namespace torch::jit {
namespace {
std::string getInputDebugName(const Node& n, const int idx) {
return n.inputs().at(idx)->debugName();
}
void assert_ignored_methods_not_called(
torch::jit::Function& fn,
const std::unordered_set<std::string>& ignored_methods) {
if (ignored_methods.empty()) {
return;
}
const bool recurse = true;
std::vector<Node*> all_nodes = findAllNodes(
*toGraphFunction(fn).graph(), c10::prim::CallMethod, recurse);
// Extract method names from these nodes.
std::unordered_set<std::string> encountered_ignored_methods;
for (Node* n : all_nodes) {
if (ignored_methods.count(n->s(attr::name)) > 0 &&
getInputDebugName(*n, 0) == "self") {
encountered_ignored_methods.insert(
getInputDebugName(*n, 0) + "." + n->s(attr::name));
}
}
if (encountered_ignored_methods.empty()) {
return;
}
const std::string encountered_ignored_methods_str =
c10::Join(", ", encountered_ignored_methods);
TORCH_CHECK(
false,
"Preserved method '",
fn.name(),
"' references ignored method(s) '",
encountered_ignored_methods_str,
"'. This is not permitted.");
}
void assert_ignored_attributes_not_referenced(
torch::jit::Function& fn,
const std::unordered_set<std::string>& ignored_attributes) {
if (ignored_attributes.empty()) {
return;
}
const bool recurse = true;
std::vector<Node*> all_nodes =
findAllNodes(*toGraphFunction(fn).graph(), c10::prim::GetAttr, recurse);
// Extract attribute names from these nodes.
std::unordered_set<std::string> encountered_ignored_attributes;
for (Node* n : all_nodes) {
if (ignored_attributes.count(n->s(attr::name)) > 0 &&
getInputDebugName(*n, 0) == "self") {
encountered_ignored_attributes.insert(
getInputDebugName(*n, 0) + "." + n->s(attr::name));
}
}
if (encountered_ignored_attributes.empty()) {
return;
}
const std::string encountered_ignored_attributes_str =
c10::Join(", ", encountered_ignored_attributes);
TORCH_CHECK(
false,
"Preserved method '",
fn.name(),
"' references ignored attribute(s) '",
encountered_ignored_attributes_str,
"'. This is not permitted.");
}
} // namespace
static ObjectPtr create_module_object(
c10::QualifiedName class_name,
std::shared_ptr<CompilationUnit> cu,
bool shouldMangle = false) {
// If the name is unqualified, prepend a `__torch__`, similar to what Python
// does with `__main__` for top-level code.
if (class_name.prefix().empty()) {
class_name = c10::QualifiedName("__torch__", class_name.name());
}
if (shouldMangle && cu->get_class(class_name) != nullptr) {
class_name = cu->mangle(class_name);
}
auto cls = ClassType::create(std::move(class_name), cu, /*is_module=*/true);
cu->register_type(cls);
return c10::ivalue::Object::create(
c10::StrongTypePtr(std::move(cu), std::move(cls)), 0);
}
Module::Module(c10::QualifiedName class_name)
: Object(create_module_object(
std::move(class_name),
std::make_shared<CompilationUnit>())) {}
Module::Module(
std::shared_ptr<CompilationUnit> cu,
const c10::ClassTypePtr& type)
: Object(c10::ivalue::Object::create(
c10::StrongTypePtr(std::move(cu), type),
type->numAttributes())) {}
Module::Module(
c10::QualifiedName class_name,
std::shared_ptr<CompilationUnit> cu,
bool shouldMangle)
: Object(create_module_object(
std::move(class_name),
std::move(cu),
shouldMangle)) {}
// first class mode runs models as first class objects,
// and does not force inlining everywhere. This is experimental
// as we bring up the system since it will degrade performance
// and may introduce bugs. test_jit.py provides context managers
// that enable it for specific tests.
thread_local bool inline_everything = false;
bool& getInlineEverythingMode() {
return inline_everything;
}
void Module::to(at::Device device, at::ScalarType dtype, bool non_blocking) {
to_impl(device, dtype, non_blocking);
}
void Module::to(at::ScalarType dtype, bool non_blocking) {
to_impl(/*device=*/c10::nullopt, dtype, non_blocking);
}
void Module::to(at::Device device, bool non_blocking) {
to_impl(device, /*dtype=*/c10::nullopt, non_blocking);
}
static void module_state_to(
const autograd::Variable& variable,
const c10::optional<at::Device>& device,
const c10::optional<at::ScalarType>& dtype,
bool non_blocking) {
// Need to access the `at::Tensor` as a `Variable` here.
// Use the data's original device or dtype if not supplied here.
auto new_data = variable.to(
device.value_or(variable.device()),
dtype.value_or(variable.scalar_type()),
non_blocking);
variable.set_data(new_data);
}
void Module::to_impl(
const c10::optional<at::Device>& device,
const c10::optional<at::ScalarType>& dtype,
bool non_blocking) {
for (at::Tensor e : parameters()) {
module_state_to(e, device, dtype, non_blocking);
}
for (at::Tensor e : buffers()) {
module_state_to(e, device, dtype, non_blocking);
}
}
Method::Method(ModulePtr owner, Function* function)
: owner_(std::move(owner)), function_(function) {}
Module Method::owner() const {
return Module(owner_);
}
void Method::run(Stack& stack) {
stack.insert(stack.begin(), owner()._ivalue()); // self
RECORD_TORCHSCRIPT_FUNCTION(name(), stack);
function_->run(stack);
}
IValue Method::operator()(std::vector<IValue> stack, const Kwargs& kwargs)
const {
stack.insert(stack.begin(), owner()._ivalue()); // self
RECORD_TORCHSCRIPT_FUNCTION(name(), stack);
return (*function_)(std::move(stack), kwargs);
}
c10::intrusive_ptr<c10::ivalue::Future> Method::run_async(
std::vector<IValue> stack,
const Kwargs& kwargs,
TaskLauncher taskLauncher) {
stack.insert(stack.begin(), owner()._ivalue());
RECORD_TORCHSCRIPT_FUNCTION(name(), stack);
function_->getSchema().checkAndNormalizeInputs(stack, kwargs);
return function_->runAsync(stack, std::move(taskLauncher));
}
void Method::setArgumentNames(
std::vector<std::string>& argumentNamesOut) const {
TORCH_INTERNAL_ASSERT(function_);
auto& arguments = function_->getSchema().arguments();
argumentNamesOut.reserve(arguments.size());
for (auto& argument : arguments) {
if (argument.name() == "self") {
continue;
}
argumentNamesOut.push_back(argument.name());
}
}
IValue Module::operator()(std::vector<IValue> inputs) {
const auto& pre_forward_hooks = type()->getForwardPreHooks();
const auto& forward_hooks = type()->getForwardHooks();
// call forward pre_hooks
for (const auto& pre_hook : pre_forward_hooks) {
auto tuple_input = c10::ivalue::Tuple::create(inputs);
IValue result = Method(_ivalue(), pre_hook)({tuple_input});
if (!result.isNone()) {
if (result.isTuple()) {
inputs = result.toTupleRef().elements().vec();
} else {
inputs = {result};
}
}
}
// call forward
auto outputs = forward(inputs);
// call forward hooks
for (const auto& hook : forward_hooks) {
auto tuple_input = c10::ivalue::Tuple::create(inputs);
auto hook_result = Method(_ivalue(), hook)({tuple_input, outputs});
if (!hook_result.isNone()) {
outputs = hook_result;
}
}
return outputs;
}
void Module::clone_method(
const Module& orig,
const Function& method,
const std::unordered_map<TypePtr, TypePtr>& type_remap) {
// type remapping - when we copy method implementations from one module
// singleton to another, we need to update the types of the self arguments
// to match the new module.
// XXX - this only handles modules that occur as variables, not modules
// that appear in aggregate types. Currently this works fine because
// we restrict how modules can be used during the lowering step. Eventually,
// we will need to decide what it means for us to 'copy' a module.
// For instance, we can copy just the state (parameters, attributes),
// but share the code. Or we can copy the code. If we choose to copy the
// code, what should we do about aggregate types that contain a module?
auto type_remap_fn = [&](TypePtr in) {
auto it = type_remap.find(in);
if (it == type_remap.end())
return in;
return it->second;
};
auto graph = toGraphFunction(method).graph()->copy();
graph->remapTypes(type_remap_fn);
auto schema = method.getSchema().cloneWithRemappedTypes(type_remap_fn);
const auto this_method_name = getNameForMethod(method.name());
auto copied =
_ivalue()->compilation_unit()->create_function(this_method_name, graph);
type()->addMethod(copied);
copied->setSchema(std::move(schema));
}
void Module::clone_method(const Module& orig, const std::string& name) {
std::unordered_map<TypePtr, TypePtr> type_remap;
std::vector<std::pair<Module, Module>> to_scan = {{orig, *this}};
while (!to_scan.empty()) {
auto entry = to_scan.back();
to_scan.pop_back();
type_remap[entry.first._ivalue()->type()] = entry.second._ivalue()->type();
for (const NameModule& s : entry.first.named_children()) {
to_scan.emplace_back(
s.value, Module(entry.second.attr(s.name).toObject()));
}
}
return clone_method(orig, orig.get_method(name).function(), type_remap);
}
Module Module::copy() const {
return Module(_ivalue()->copy());
}
Module Module::deepcopy(c10::optional<at::Device> device) const {
return Module(_ivalue()->deepcopy(device));
}
Module Module::clone(bool inplace) const {
std::unordered_map<TypePtr, TypePtr> type_remap;
IValue::HashAliasedIValueMap memo;
const std::unordered_set<std::string> ignored_methods;
const std::unordered_set<std::string> ignored_attributes;
return clone_impl(
type_remap, inplace, memo, ignored_methods, ignored_attributes);
}
Module Module::clone(
bool inplace,
const std::unordered_set<std::string>& ignored_methods,
const std::unordered_set<std::string>& ignored_attributes) const {
std::unordered_map<TypePtr, TypePtr> type_remap;
IValue::HashAliasedIValueMap memo;
return clone_impl(
type_remap, inplace, memo, ignored_methods, ignored_attributes);
}
Module Module::clone_impl(
std::unordered_map<TypePtr, TypePtr>& type_remap,
bool inplace,
IValue::HashAliasedIValueMap memo,
const std::unordered_set<std::string>& ignored_methods,
const std::unordered_set<std::string>& ignored_attributes) const {
// Create a new _ivalue in the same compilation unit.
// Since now we have shared ClassType, we need to preserve the shared
// ClassType during cloning, so we first need to check if the type
// is already cloned, if so, we'll create a new module with the cloned
// ClassType, if not, we'll create a new module and a new ClassType.
bool type_already_cloned = type_remap.find(type()) != type_remap.end();
Module r;
if (type_already_cloned) {
// if we cloned the class type before, we'll reuse it
Module new_module(
_ivalue()->compilation_unit(), type_remap[type()]->cast<ClassType>());
r = new_module;
} else {
Module new_module(*type()->name(), _ivalue()->compilation_unit(), true);
r = new_module;
type_remap[type()] = r.type();
}
// Copy slots. If a slot is a module - recursively clone it.
size_t N = type()->numAttributes();
for (const auto i : c10::irange(N)) {
IValue s = _ivalue()->getSlot(i);
std::string attr_name = type()->getAttributeName(i);
// If this attribute is in the list of ignored attributes, skip it
// (i.e. do not clone it).
if (ignored_attributes.count(attr_name) != 0) {
continue;
}
TypePtr attr_type = type()->getAttribute(i);
if (attr_type->is_module()) {
const Module& orig = Module(s.toObject());
const std::unordered_set<std::string> empty_set;
Module cloned =
orig.clone_impl(type_remap, inplace, memo, empty_set, empty_set);
type_remap[orig.type()] = cloned.type();
// NOTE: why do we need to manually setattr on object instead of using
// register_module here? because the attr can be a module interface
// type and hold a Module object still. register_module will not let us
// correctly set up the type for this attr, so we had to do this manually.
// In the case it's an interface type, the type will be shared by the new
// cloned instance in the same compilation unit bc it only contains a list
// of functionSchema
r.type()->addOrCheckAttribute(
attr_name, attr_type->cast<ClassType>() ? cloned.type() : attr_type);
r._ivalue()->setAttr(attr_name, cloned._ivalue());
} else {
// this adds new slot and creates a new attribute for the underlying type
// if the type is not already cloned, otherwise it will only add a new
// slot and typecheck
r.register_attribute(
type()->getAttributeName(i),
attr_type,
// we'll deepcopy the IValue in non inplace option
inplace ? s : s.deepcopy(memo),
type()->is_parameter(i),
type()->is_buffer(i));
}
}
// only clone the methods if the ClassType is not cloned before
if (!type_already_cloned) {
// clone constants
for (size_t i = 0; i < type()->numConstants(); ++i) {
r.type()->addConstant(type()->getConstantName(i), type()->getConstant(i));
}
// clone methods, remapping the types to the cloned ones.
for (auto& fn : type()->methods()) {
// If this method is not in the list of ignored methods, clone it.
if (ignored_methods.count(fn->name()) == 0) {
assert_ignored_methods_not_called(*fn, ignored_methods);
assert_ignored_attributes_not_referenced(*fn, ignored_attributes);
r.clone_method(*this, *fn, type_remap);
}
}
// Execute __setstate__(__getstate__()) to initialize custom class members.
if (auto setstate_method = r.find_method("__setstate__")) {
auto getstate_method = r.find_method("__getstate__");
TORCH_INTERNAL_ASSERT(getstate_method, "expect __getstate__");
auto state = (*getstate_method)(Stack{});
(*setstate_method)(Stack{state});
}
}
return r;
}
void Module::train(bool on) {
for (Module m : modules()) {
if (auto slot = m._ivalue()->type()->findAttributeSlot("training")) {
m._ivalue()->setSlot(*slot, on);
} else {
// FIXME[T110620981]: This assert was broken (never asserted), and once
// fixed it triggers test failures. Fix me!
/* TORCH_INTERNAL_ASSERT(false, "'training' attribute not found"); */
}
}
}
IValue Module::create_class(const c10::QualifiedName& name, Stack stack) const {
// Look up the class
const auto classType =
_ivalue()->compilation_unit()->get_class(c10::QualifiedName(name));
if (!classType) {
AT_ERROR(
"Could not find class with name: '",
name.qualifiedName(),
"' in module.");
}
// Create a bare object with correct number of slots
const size_t numAttrs = classType->numAttributes();
auto obj = c10::ivalue::Object::create(
c10::StrongTypePtr(_ivalue()->compilation_unit(), classType), numAttrs);
// Invoke the `__init__()` of the class with the arguments provided.
Stack stackWithSelf = {obj};
for (auto& arg : stack) {
stackWithSelf.push_back(std::move(arg));
}
// Note: following Python, `__init__()` modifies its first parameter in-place
// and returns nothing.
classType->getMethod("__init__").operator()(std::move(stackWithSelf));
return obj;
}
Module freeze(
const Module& module,
const c10::optional<std::vector<std::string>>& preserved_attrs,
bool optimize_numerics) {
TORCH_CHECK(
!module.hasattr("training") || !module.is_training(),
"Freezing is currently only implemented for modules in eval mode. Please call .eval() before freezing");
Module out_mod = freeze_module(
module, preserved_attrs.value_or(std::vector<std::string>({})));
auto graph = out_mod.get_method("forward").graph();
OptimizeFrozenGraph(graph, optimize_numerics);
return out_mod;
}
namespace {
void optimize_for_inference(std::shared_ptr<Graph> graph) {
FuseFrozenConvAddRelu(graph);
ConvertFrozenOpsToMKLDNN(graph);
FrozenLinearTranspose(graph);
}
} // namespace
Module optimize_for_inference(
Module& module,
const std::vector<std::string>& other_methods) {
// if not frozen yet
Module frozen_mod;
if (module._ivalue()->type()->hasAttribute("training")) {
frozen_mod = freeze(module, {}, true);
} else {
frozen_mod = module;
}
if (auto method = frozen_mod.find_method("forward")) {
optimize_for_inference(frozen_mod.get_method("forward").graph());
}
for (const auto& method : other_methods) {
optimize_for_inference(frozen_mod.get_method(method).graph());
}
return frozen_mod;
}
buffer_list Module::buffers(bool recurse) const {
return buffer_list(*this, recurse, /*return_module=*/false);
}
named_buffer_list Module::named_buffers(bool recurse) const {
return named_buffer_list(*this, recurse, /*return_module=*/false);
}
module_list Module::children() const {
return module_list(*this, /*recurse=*/false, /*return_module=*/false);
}
named_module_list Module::named_children() const {
return named_module_list(*this, /*recurse=*/false, /*return_module=*/false);
}
module_list Module::modules() const {
return module_list(*this, /*recurse=*/true, /*return_module=*/true);
}
named_module_list Module::named_modules() const {
return named_module_list(*this, /*recurse=*/true, /*return_module=*/true);
}
parameter_list Module::parameters(bool recurse) const {
return parameter_list(*this, recurse, /*return_module=*/false);
}
named_parameter_list Module::named_parameters(bool recurse) const {
return named_parameter_list(*this, recurse, /*return_module=*/false);
}
attribute_list Module::attributes(bool recurse) const {
return attribute_list(*this, recurse, /*return_module=*/false);
}
named_attribute_list Module::named_attributes(bool recurse) const {
return named_attribute_list(*this, recurse, /*return_module=*/false);
}
void Module::apply(const std::function<void(Module&)>& fn) {
for (Module s : modules()) {
fn(s);
}
}
std::string Module::dump_to_str(
bool print_method_bodies,
bool print_attr_values,
bool print_param_values) const {
std::stringstream ss;
std::stringstream parameters_ss;
std::stringstream attributes_ss;
std::stringstream methods_ss;
std::stringstream submodules_ss;
for (const NameTensor& p : named_parameters(/*recurse=*/false)) {
parameters_ss << p.name << " = ";
if (print_param_values) {
parameters_ss << p.value << std::endl;
} else {
parameters_ss << "..." << std::endl;
}
}
for (const NameValue& p : named_attributes(/*recurse=*/false)) {
attributes_ss << p.name << " = ";
if (!p.value.isTensor() || print_attr_values) {
attributes_ss << p.value << std::endl;
} else {
attributes_ss << "..." << std::endl;
}
}
for (const Method& method : get_methods()) {
methods_ss << " method " << method.name() << " {" << std::endl;
if (print_method_bodies) {
methods_ss << torch::jit::jit_log_prefix(
" ", method.graph()->toString())
<< std::endl;
}
methods_ss << " }" << std::endl;
}
ss << "module " << type()->name()->qualifiedName() << " {" << std::endl;
ss << " parameters {" << std::endl;
ss << torch::jit::jit_log_prefix(" ", parameters_ss.str());
ss << " }" << std::endl;
ss << " attributes {" << std::endl;
ss << torch::jit::jit_log_prefix(" ", attributes_ss.str());
ss << " }" << std::endl;
ss << " methods {" << std::endl;
ss << torch::jit::jit_log_prefix(" ", methods_ss.str());
ss << " }" << std::endl;
ss << " submodules {" << std::endl;
for (const NameModule& s : named_children()) {
// We do 4 spaces here, because one level of indentation comes from
// 'submodules' scope and the other one goes from a specific submodule we're
// printing.
ss << torch::jit::jit_log_prefix(
" ",
s.value.dump_to_str(
print_method_bodies, print_attr_values, print_param_values));
}
ss << " }" << std::endl;
ss << "}" << std::endl;
return ss.str();
}
void Module::dump(
bool print_method_bodies = true,
bool print_attr_values = true,
bool print_param_values = true) const {
std::cout << dump_to_str(
print_method_bodies, print_attr_values, print_param_values)
<< std::endl;
}
} // namespace torch::jit
namespace c10 {
torch::jit::Module IValue::toModule() const {
return torch::jit::Module(toObject());
}
bool IValue::isModule() const {
return isObject() && toObjectRef().type()->is_module();
}
} // namespace c10