forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_fx.py
4533 lines (3640 loc) · 161 KB
/
test_fx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Owner(s): ["module: fx"]
import builtins
import contextlib
import copy
import functools
import inspect
import math
import numbers
import io
import operator
import os
import pickle
import sys
import torch
import traceback
import typing
import types
import warnings
import unittest
from math import sqrt
from functorch.experimental import control_flow
from torch.multiprocessing import Process
from torch.testing import FileCheck
from torch.testing._internal.common_methods_invocations import op_db
from torch.testing._internal.common_device_type import ops, onlyCPU, instantiate_device_type_tests
import torch.utils._pytree as pytree
import torch.fx._pytree as fx_pytree
from torch.fx import symbolic_trace, Proxy, Node, GraphModule, Interpreter, Tracer, Transformer, Graph, wrap, PH, CodeGen
from torch.fx.node import Target, Argument, _format_arg
from torch.fx.passes import shape_prop
from torch.fx.immutable_collections import immutable_dict, immutable_list
from torch.fx.experimental.rewriter import RewritingTracer
from torch.fx.operator_schemas import get_signature_for_torch_op
from copy import deepcopy
from collections import namedtuple
from torch.fx.proxy import TraceError
from torch.fx._compatibility import _BACK_COMPAT_OBJECTS, _MARKED_WITH_COMPATIBILITY
from torch.fx._symbolic_trace import PHBase, PHWithMeta
from fx.test_subgraph_rewriter import TestSubgraphRewriter # noqa: F401
from fx.test_dce_pass import TestDCE # noqa: F401
from fx.test_fx_const_fold import TestConstFold # noqa: F401
from fx.test_fx_param_shape_control_flow import TestConstParamShapeInControlFlow # noqa: F401
from fx.test_pass_infra import TestPassManager # noqa: F401
from fx.test_common_passes import TestCommonPass # noqa: F401
from fx.test_cse_pass import TestCSEPass # noqa: F401
from fx.test_matcher_utils import TestMatcher # noqa: F401
from fx.test_source_matcher_utils import TestSourceMatcher # noqa: F401
from fx.test_gradual_type import AnnotationsTest # noqa: F401
from fx.test_gradual_type import TypeCheckerTest # noqa: F401
from typing import Any, Callable, Dict, NamedTuple, List, Optional, Tuple, Union
from torch.testing._internal.common_utils import (
IS_FBCODE,
IS_MACOS,
IS_WINDOWS,
find_library_location,
run_tests,
)
from torch.testing._internal.jit_utils import JitTestCase
from fx.named_tup import MyNamedTup
try:
from torchvision import models as torchvision_models
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")
from torch.testing._internal.common_quantization import skipIfNoDynamoSupport
class SimpleTest(torch.nn.Module):
def forward(self, x):
return torch.relu(x + 3.0)
def a_non_torch_leaf(a, b):
return a + b
# Used for test_autowrap_function. Autowrapped functions need to be global
def fx_int(x: float) -> int:
return int(x)
def fx_int_x2(x: float) -> int:
return int(x) * 2
# used in test_pytree. It's all the way out here because pickling a GraphModule
# that uses Point errors out if Point is local to the function
Point = namedtuple('Point', ['x', 'y'])
# Test wrap() passing both a function name as well as a function
# directly
def a_lifted_leaf(a, b):
return a[0] + a[1] + b
wrap('a_lifted_leaf')
# Test wrapping twice doesn't break anything
wrap('a_lifted_leaf')
def a_lifted_leaf2(a, b):
return a[0] + a[1] + b
wrap(a_lifted_leaf2)
wrap('len')
wrap('getattr')
def wrapped_named_tup(p1, *, p2):
return p1.x + p2.y
wrap(wrapped_named_tup)
@wrap
def wrapped_via_decorator(a):
return a + 1
wrap('wrapped_with_submodule')
def wrapped_with_submodule(x: torch.Tensor, batchnorm1d: torch.nn.BatchNorm1d):
return batchnorm1d(x)
def my_decorator(f):
@functools.wraps(f)
def wrapper_inside_decorator(*args, **kwargs):
return f(*args, **kwargs)
return wrapper_inside_decorator
@wrap
@my_decorator
def wrapped_decorated_fn(x):
return x
real_wrapped_via_decorator = wrapped_via_decorator
real_a_lifed_leaf = a_lifted_leaf
real_a_lifed_leaf2 = a_lifted_leaf2
_sqrt = sqrt
wrap('wrapper_fn')
def wrapper_fn(x):
return torch.foo(x)
class Pair(NamedTuple):
x : torch.Tensor
y : torch.Tensor
def _custom_fx_repr_fn(self) -> str:
return f"Pair(x={_format_arg(self.x)}, y={_format_arg(self.y)})"
# for testing pytrees
class Foo: # noqa: B209
def __init__(self, a, b):
self.a = a
self.b = b
class Add(torch.nn.Module):
def forward(self, x):
return x + x
@torch.fx.has_side_effect
@torch.fx.wrap
def side_effect_func(x: torch.Tensor):
print(x)
class TestFX(JitTestCase):
def setUp(self):
super().setUp()
# Checking for mutable operations whil tracing is feature flagged
# Enable it in testing but not by default
self.orig_tracer_mutable_flag = torch.fx.proxy.TracerBase.check_mutable_operations
torch.fx.proxy.TracerBase.check_mutable_operations = True
if not (IS_FBCODE or IS_WINDOWS or IS_MACOS):
lib_file_path = find_library_location('libtorchbind_test.so')
torch.ops.load_library(str(lib_file_path))
def tearDown(self):
super().tearDown()
torch.fx.proxy.TracerBase.check_mutable_operations = self.orig_tracer_mutable_flag
def checkGraphModule(self, m: torch.nn.Module, args, kwargs=None):
"""Check that an nn.Module's results match the GraphModule version
for a given set of args/kwargs.
"""
kwargs = kwargs if kwargs else {}
ref_outs = m(*args, **kwargs)
gm = symbolic_trace(m)
gm.graph.lint()
test_outs = gm(*args, **kwargs)
self.assertEqual(ref_outs, test_outs)
def test_graph_module(self):
class MySub(torch.nn.Module):
def __init__(self):
super().__init__()
self.w = torch.nn.Parameter(torch.rand(4, 3))
def forward(self, x):
return self.w + x
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.lin = torch.nn.Linear(4, 3)
self.sub_mod = MySub()
self.w = torch.nn.Parameter(torch.rand(3))
def forward(self, A, B, c):
t = torch.sigmoid(A) + self.lin(c)
return self.sub_mod(t.data + self.w + t + 1 - A + B // A + -A + A.add(B, alpha=3))
m = MyModule()
gm = symbolic_trace(m)
ms = torch.jit.script(gm)
class M2(torch.nn.Module):
def forward(self, A):
m, idx = torch.max(A, 0)
return m + 1, idx + 1
m2 = M2()
gm2 = symbolic_trace(m2)
class T(torch.nn.Module):
def forward(self, A, b=4, *args, c=5, **kwargs):
x = A + 1 + args[0] + kwargs['3']
return x
t = T()
symbolic_trace(t)
# test for issue described at https://github.com/pytorch/pytorch/issues/63883
class M3(torch.nn.Module):
def forward(self, x):
return torch.relu(x)
m3 = M3()
gm3 = symbolic_trace(m3)
new_instance = gm3.__new__(type(gm3))
new_instance.__init__(gm3, gm3.graph)
x = torch.randn(5, 3)
torch.testing.assert_close(new_instance(x), torch.relu(x))
def test_informative_co_filename(self):
class MyModule(torch.nn.Module):
def forward(self, a):
return a * 2
gm = symbolic_trace(MyModule())
self.assertIn(os.path.basename(__file__), gm.forward.__code__.co_filename)
def test_custom_import(self):
graph = torch.fx.Graph()
a = graph.placeholder('x')
b = graph.placeholder('y')
c = graph.call_function(a_non_torch_leaf, (a, b))
d = graph.call_function(torch.sin, (c,))
graph.output(d)
gm = GraphModule(torch.nn.Module(), graph)
x, y = torch.rand(1), torch.rand(1)
self.assertEqual(torch.sin(x + y), gm(x, y))
def test_args_kwargs(self):
class T(torch.nn.Module):
def forward(self, *args, **kwargs):
x = args[0] + kwargs['foo']
return x
t = T()
self.checkGraphModule(t, (torch.rand(1), torch.rand(1)), {'foo': torch.rand(1)})
def test_args_kwargs_no_self(self):
class T(torch.nn.Module):
def forward(*args, **kwargs): # noqa: B902
self = args[0]
return torch.relu(args[1])
t = T()
with self.assertRaisesRegex(RuntimeError, r'cannot be part of \*args expansion'):
self.checkGraphModule(t, (torch.rand(1), torch.rand(1)), {'foo': torch.rand(1)})
def test_fx_shifts(self):
class MyModule(torch.nn.Module):
def forward(self, x):
return x << 3, x >> 3
input = torch.LongTensor(10).random_(0, 1024)
m = MyModule()
self.checkGraphModule(m, (input,))
def test_fx_and_or(self):
class MyModule(torch.nn.Module):
def forward(self, x):
return x & x, x | x
input = torch.LongTensor(10).random_(0, 1024)
m = MyModule()
self.checkGraphModule(m, (input,))
def test_dict(self):
class MyDictMod(torch.nn.Module):
def forward(self, d):
return d['3'].relu(), {'4' : d['3'].neg()}
input_dict = {'3': torch.rand(3, 4)}
m = MyDictMod()
self.checkGraphModule(m, (input_dict,))
def test_matmul_tracing(self):
const = torch.randn(3)
def matmul_f(x):
return x @ const
mod = symbolic_trace(matmul_f)
inp = torch.randn(3)
self.assertEqual(mod(inp), matmul_f(inp))
def rmatmul_f(x):
return const @ x
mod = symbolic_trace(rmatmul_f)
inp = torch.randn(3)
self.assertEqual(mod(inp), rmatmul_f(inp))
@skipIfNoDynamoSupport
def test_control_flow_tracing(self):
def true(x, y):
return x + y
def false(x, y):
return x - y
def f(x, y):
x = control_flow.cond(x[0] == 0, true, false, [x, y])
with self.assertRaisesRegex(RuntimeError, r"Expected pred to be bool or tensor, but got Proxy\(eq\)"):
_ = symbolic_trace(f)
def test_disallow_override(self):
# Custom delegate to disallow in-place tensor operations
class NoMutableCallTracer(Tracer):
def create_node(self, kind : str, target : Union[str, Callable],
args : Tuple[Argument, ...], kwargs : Dict[str, Any], name : Optional[str] = None,
type_expr : Optional[Any] = None) -> Node:
name = target if isinstance(target, str) else torch.typename(target)
if name[-1] == '_':
raise RuntimeError('In-place operations are not supported')
return super().create_node(kind, target, args, kwargs, name)
# Test method
class MyInplaceMod(torch.nn.Module):
def forward(self, x):
x.add_(3.0)
return x
m = MyInplaceMod()
with self.assertRaisesRegex(RuntimeError, 'In-place operations'):
NoMutableCallTracer().trace(m)
# Test free function
class MyInplaceMod2(torch.nn.Module):
def forward(self, x):
torch.log_(x)
return x
m2 = MyInplaceMod2()
with self.assertRaisesRegex(RuntimeError, 'In-place operations'):
NoMutableCallTracer().trace(m2)
# Test symbolic node as an arg
class MyInplaceMod3(torch.nn.Module):
def forward(self, x):
y = torch.ones(3, 4)
y.add_(x)
return x
m3 = MyInplaceMod3()
with self.assertRaisesRegex(RuntimeError, 'In-place operations'):
NoMutableCallTracer().trace(m3)
def test_leaf_module(self):
# Custom delegate to make it so that there are no leaf modules, everything
# should get traced through
class NoLeafModulesTracer(Tracer):
def is_leaf_module(self, m, qualname):
return False
class MyReluMod(torch.nn.Module):
def __init__(self):
super().__init__()
self.relu = torch.nn.ReLU()
def forward(self, x):
return self.relu(x)
mrm = MyReluMod()
sym = NoLeafModulesTracer().trace(mrm)
for node in sym.nodes:
self.assertNotEqual(node.op, 'call_module')
sym.lint()
def test_wrap(self):
self.assertEqual(3 + 4 + 5, a_lifted_leaf((3, 4), 5))
def to_trace(y):
return a_lifted_leaf((4, y), 3) + a_lifted_leaf((3, 4), 5) + a_lifted_leaf((y, y), y)
m = symbolic_trace(to_trace)
self.assertIn('a_lifted_leaf', m.code)
self.assertEqual(27, m(2))
self.assertIs(a_lifted_leaf, real_a_lifed_leaf)
def test_wrap_fn_directly(self):
self.assertEqual(3 + 4 + 5, a_lifted_leaf2((3, 4), 5))
def to_trace(y):
return a_lifted_leaf2((4, y), 3) + a_lifted_leaf2((3, 4), 5) + a_lifted_leaf2((y, y), y)
m = symbolic_trace(to_trace)
self.assertIn('a_lifted_leaf2', m.code)
self.assertEqual(27, m(2))
self.assertIs(a_lifted_leaf2, real_a_lifed_leaf2)
def test_wrapped_via_decorator(self):
self.assertEqual(wrapped_via_decorator(0), 1)
def to_trace(y):
return wrapped_via_decorator(y)
m = symbolic_trace(to_trace)
self.assertIn('wrapped_via_decorator', m.code)
self.assertEqual(m(0), 1)
self.assertIs(wrapped_via_decorator, real_wrapped_via_decorator)
self.assertFalse(hasattr(wrapped_via_decorator, "__fx_already_patched"))
def test_wrapped_via_decorator_and_transformed(self):
self.assertEqual(wrapped_via_decorator(0), 1)
def to_trace(y):
return wrapped_via_decorator(y)
m = symbolic_trace(to_trace)
self.assertIn('wrapped_via_decorator', m.code)
self.assertEqual(m(0), 1)
self.assertIs(wrapped_via_decorator, real_wrapped_via_decorator)
self.assertFalse(hasattr(wrapped_via_decorator, "__fx_already_patched"))
transformed = torch.fx.Transformer(m).transform()
self.assertIn('wrapped_via_decorator', transformed.code)
self.assertEqual(transformed(0), 1)
self.assertIs(wrapped_via_decorator, real_wrapped_via_decorator)
self.assertFalse(hasattr(wrapped_via_decorator, "__fx_already_patched"))
def test_wrap_with_submodule(self):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.batchnorm1d = torch.nn.BatchNorm1d(2, affine=False)
def forward(self, x: torch.Tensor):
return wrapped_with_submodule(x, self.batchnorm1d)
m = symbolic_trace(M())
self.assertIn("wrapped_with_submodule", m.code)
input = torch.rand(3, 2)
ref_batchnorm1d = torch.nn.BatchNorm1d(2, affine=False)
self.assertEqual(ref_batchnorm1d(input), m(input))
def test_wrapped_retrace(self):
def to_trace(y):
return wrapped_via_decorator(y)
m = symbolic_trace(to_trace)
self.assertIn('wrapped_via_decorator', m.code)
self.assertEqual(m(0), 1)
retraced = symbolic_trace(m)
self.assertIn('wrapped_via_decorator', retraced.code)
self.assertEqual(retraced(0), 1)
def test_wrap_decorated_function(self):
def to_trace(y):
return wrapped_decorated_fn(y)
m = symbolic_trace(to_trace)
self.assertIn('wrapped_decorated_fn', m.code)
self.assertEqual(m(1), 1)
def test_graph_edit_with_proxy(self):
class M(torch.nn.Module):
def forward(self, a, b):
return a + b
m = M()
g = symbolic_trace(m).graph
new_g = torch.fx.Graph()
val_map : Dict[Node, Node] = {}
output_val = new_g.graph_copy(g, val_map)
t = Proxy(output_val)
# test that we can use proxy objects to generate more graph code later for things that do not need to work with modules.
new_g.output((t + t).node)
gm = GraphModule(m, new_g)
gm.graph.lint()
self.assertEqual(gm(3, 4), 14)
def test_concrete_arg_none_assert(self):
class Foo(torch.nn.Module):
def forward(self, x, val=None):
return x if val is None else x + val
f = Foo()
traced = torch.fx.symbolic_trace(f, concrete_args={'val' : None})
with self.assertRaisesRegex(AssertionError, 'val has been specialized to have value None'):
traced(torch.randn(5), torch.randn(5))
x = torch.randn(5)
torch.testing.assert_close(traced(x), f(x))
def test_trace_multiple_funcs(self):
class Foo(torch.nn.Module):
def forward(self, x, y):
return x + y
def minus_forward(self, x, y):
return x - y
def multiply_forward(self, x, y):
return x * y
f = Foo()
x, y = torch.randn(5), torch.randn(5)
print(torch.__version__)
tracer = Tracer()
torch.testing.assert_close(GraphModule(f, tracer.trace(f))(x, y), f(x, y))
tracer.traced_func_name = "minus_forward"
torch.testing.assert_close(
GraphModule(f, tracer.trace(f))(x, y),
f.minus_forward(x, y),
)
tracer.traced_func_name = "multiply_forward"
torch.testing.assert_close(
GraphModule(f, tracer.trace(f))(x, y),
f.multiply_forward(x, y),
)
tracer.traced_func_name = "add_forward"
with self.assertRaisesRegex(AssertionError, "doesn't exist in"):
tracer.trace(f)
def test_graph_unique_names(self):
class M(torch.nn.Module):
def forward(self, a, b):
return a + b
m = M()
g = symbolic_trace(m).graph
new_g = torch.fx.Graph()
val_map : Dict[Node, Node] = {}
output_val = new_g.graph_copy(g, val_map)
t = Proxy(output_val)
# test that we can use proxy objects to generate more graph code later for things that do not need to work with modules.
new_g.output((t + t).node)
gm = GraphModule(m, new_g)
seen_names : Set[str] = set()
for node in gm.graph.nodes:
assert node.name not in seen_names
seen_names.add(node.name)
def test_stack_traces(self):
class M(torch.nn.Module):
def forward(self, a, b):
return a + b
tracer = torch.fx.Tracer()
tracer.record_stack_traces = True
graph = tracer.trace(M())
# saving the original list because we will insert new nodes as a part of a test
orig_graph_nodes = list(graph.nodes)
for node in orig_graph_nodes:
if node.op == 'output':
continue
self.assertTrue(node.stack_trace is not None)
assert 'test_fx.py' in node.stack_trace
# verify that copying the node does not lose the stack trace
new_node = graph.node_copy(node)
self.assertTrue(new_node.stack_trace is not None)
assert 'test_fx.py' in new_node.stack_trace
def test_stack_traces_with_transformer(self):
class M(torch.nn.Module):
def forward(self, a, b):
return a + b
tracer = torch.fx.Tracer()
tracer.record_stack_traces = True
graph = tracer.trace(M())
gm = GraphModule(tracer.root, graph)
new_gm = Transformer(gm).transform()
# nodes after Transformer should still preserve the original node's stack trace
for node in new_gm.graph.nodes:
if node.op in {'placeholder', 'output'}:
continue
self.assertTrue(node.stack_trace is not None)
assert 'test_fx.py' in node.stack_trace
def test_lineno_map(self):
class M(torch.nn.Module):
def forward(self, a, b):
a = torch.sin(a)
b = torch.cos(b)
return a + b
tracer = torch.fx.Tracer()
graph = tracer.trace(M())
gm = GraphModule(tracer.root, graph)
expected = {1: 2, 2: 3, 3: 4, 4: 5}
self.assertTrue(set(expected.items()).issubset(set(gm._lineno_map.items())))
# test custom codegen
def transform_code(code):
return ["print('hello!')\n", *code]
gm.graph.on_generate_code(lambda _: transform_code)
gm.recompile()
expected = {2: 2, 3: 3, 4: 4, 5: 5}
self.assertTrue(set(expected.items()).issubset(set(gm._lineno_map.items())))
def test_graph_unique_names_manual(self):
graph : torch.fx.Graph = torch.fx.Graph()
a : torch.fx.Node = graph.create_node('placeholder', 'x')
b : torch.fx.Node = graph.create_node('call_module', 'linear_mod', args=(a,), name='foo_1_1')
c : torch.fx.Node = graph.create_node('get_attr', 'y_attr', name='foo_1')
d : torch.fx.Node = graph.create_node('call_function', operator.add, args=(b, c))
graph.output(d)
graph2 = torch.fx.Graph()
val_map : Dict[Node, Node] = {}
graph2.graph_copy(graph, val_map)
seen_names : Set[str] = set()
for node in graph2.nodes:
assert node.name not in seen_names
seen_names.add(node.name)
def test_unpack(self):
class M(torch.nn.Module):
def forward(self, a, b):
c, d = a
return c + d + b
a = (torch.rand(1), torch.rand(1))
b = torch.rand(1)
m = M()
self.checkGraphModule(m, (a, b))
def test_native_callable(self):
if IS_FBCODE or IS_WINDOWS or IS_MACOS:
raise unittest.SkipTest("non-portable load_library call used in test")
# This test exercises the case where we use FX to translate from Python
# code to some native callable object
#
# For the purposes of testing, we use ElementwiseInterpreter defined
# in test_custom_class.cpp.
#
# We test that we can
# 1) Construct a native callable from FX IR
# 2) Construct a drop-in replacement module that delegates to the
# native callable rather than the original code
# 3) Run both the original code and native callable wrapper with
# equivalent results
# 4) TorchScript compile the native callable wrapper and confirm
# equivalent results with the reference
# 5) TorchScript serialize and deserialize the native callable
# and confirm equivalent results with the reference
# We use this simple Module as a reference computation
class MySimpleMod(torch.nn.Module):
def forward(self, x):
return 3.0 * x + x
msm = MySimpleMod()
# This is what a lowering pass might look like: a function that takes
# a valid nn.Module, symbolically traces it, lowers the Module to some
# representation, and wraps that representation up into another
# nn.Module instance that handles dispatch to the compiled/lowered code.
def lower_to_elementwise_interpreter(orig_mod : torch.nn.Module) -> torch.nn.Module:
# ===== Stage 1: Symbolic trace the module =====
mod = symbolic_trace(orig_mod)
# ===== Stage 2: Lower GraphModule representation to the C++
# interpreter's instruction format ======
instructions = []
constant_idx = 0
constants = {}
fn_input_names = []
target_to_name = {
operator.add : "add",
operator.mul : "mul"
}
output_node : Optional[Node] = None
# For each instruction, create a triple
# (instruction_name : str, inputs : List[str], output : str)
# to feed into the C++ interpreter
for n in mod.graph.nodes:
target, args, out_name = n.target, n.args, n.name
assert len(n.kwargs) == 0, "kwargs currently not supported"
if n.op == 'placeholder':
# Placeholders specify function argument names. Save these
# for later when we generate the wrapper GraphModule
fn_input_names.append(target)
elif n.op == 'call_function':
assert target in target_to_name, "Unsupported call target " + target
arg_names = []
for arg in args:
if not isinstance(arg, Node):
# Pull out constants. These constants will later be
# fed to the interpreter C++ object via add_constant()
arg_name = f'constant_{constant_idx}'
constants[arg_name] = torch.tensor(
[arg] if isinstance(arg, numbers.Number) else arg)
arg_names.append(arg_name)
constant_idx += 1
else:
arg_names.append(arg.name)
instructions.append((target_to_name[target], arg_names, out_name))
elif n.op == 'output':
if output_node is not None:
raise RuntimeError('Multiple output nodes!')
output_node = n
else:
raise RuntimeError('Unsupported opcode ' + n.op)
interpreter = torch.classes._TorchScriptTesting._ElementwiseInterpreter()
# Load constants
for k, v in constants.items():
interpreter.add_constant(k, v)
# Specify names for positional input arguments
interpreter.set_input_names(fn_input_names)
# Load instructions
interpreter.set_instructions(instructions)
# Specify name for single output
assert isinstance(output_node.args[0], torch.fx.Node)
interpreter.set_output_name(output_node.args[0].name)
# ===== Stage 3: Create a wrapper GraphModule around the interpreter =====
class WrapperModule(torch.nn.Module):
def __init__(self, interpreter):
super().__init__()
self.interpreter = interpreter
wrapper = WrapperModule(interpreter)
# Create a graph that: 1) Takes function arguments 2) Invokes the interpreter
# 3) Returns the speficied return value
# FIXME: The following code could be greatly simplified by symbolic_trace'ing
# the wrapper with a Tracer that considers the Wrapper instance a root
# module, however, I can't get `__call__` exposed on TorchBind classes
# without it messing up Python `hasattr` for some reason. More digging
# into CPython's implementation of hasattr is probably in order...
graph = torch.fx.Graph()
# Add placeholders for fn inputs
placeholder_nodes = []
for name in fn_input_names:
placeholder_nodes.append(graph.create_node('placeholder', name))
# Get the interpreter object
interpreter_node = graph.create_node('get_attr', 'interpreter')
# Add a node to call the interpreter instance
output_node = graph.create_node(
op='call_method', target='__call__', args=(interpreter_node, placeholder_nodes))
# Register output
graph.output(output_node)
graph.lint()
# Return final GraphModule!!!
return GraphModule(wrapper, graph)
# Lower GraphModule to C++ interpreter
lowered = lower_to_elementwise_interpreter(msm)
# Compare correctness with original module
x = torch.rand(3, 4)
ref_out = msm(x)
test_out = lowered(x)
torch.testing.assert_close(test_out, ref_out)
# Test TorchScript compilation
scripted_lowered = torch.jit.script(lowered)
script_out = scripted_lowered(x)
torch.testing.assert_close(script_out, ref_out)
# Test TorchScript ser/de
import_copy = self.getExportImportCopy(scripted_lowered)
imported_out = import_copy(x)
torch.testing.assert_close(imported_out, ref_out)
def test_reserved_getattr(self):
"""Ensure that we do not name any nodes with a reserved builtin like `getattr`"""
class M(torch.nn.Module):
def forward(self, a):
return a.foo.bar.baz
m = M()
m_g = symbolic_trace(m)
m_g.graph.lint()
for node in m_g.graph.nodes:
self.assertTrue(node.name != "getattr")
@unittest.skip("Hotfix for SEV remediation")
def test_trace_buffer_slice(self):
bs, d_hid = 10, 23
class ExampleCode(torch.nn.Module):
def __init__(self):
super().__init__()
self.mm_param = torch.nn.Parameter(torch.randn(d_hid, d_hid))
self.mm_param2 = torch.nn.Parameter(torch.randn(d_hid, d_hid))
self.lin = torch.nn.Linear(d_hid, d_hid)
self.register_buffer('buffer', torch.randn(bs + 100, d_hid))
def forward(self, x):
x = torch.mm(x, self.mm_param)
skip_connection = x
x = torch.relu(x)
x = torch.mm(x, self.mm_param) + self.buffer[:x.shape[0]]
x = self.lin(x)
x = torch.relu(x)
x = x + skip_connection
x = torch.mm(x, self.mm_param2)
x = self.lin(x)
return x
ec = ExampleCode()
traced = torch.fx.symbolic_trace(ec)
x = torch.randn(bs, d_hid)
torch.testing.assert_close(ec(x), traced(x))
def test_node_tagging(self):
class TaggingTracer(Tracer):
def create_node(self, kind : str, target : Union[str, Callable],
args : Tuple[Argument, ...], kwargs : Dict[str, Any], name : Optional[str] = None,
type_expr : Optional[Any] = None) -> Node:
n = super().create_node(kind, target, args, kwargs, name)
n.tag = 'foo'
return n
class M(torch.nn.Module):
def forward(self, a, b):
return a + b
m = M()
g = TaggingTracer().trace(m)
g.lint()
for n in g.nodes:
self.assertTrue(hasattr(n, 'tag'))
self.assertEqual(n.tag, 'foo')
def test_tensor_attribute(self):
class TensorAttribute(torch.nn.Module):
def __init__(self):
super().__init__()
self.tensor = torch.rand(3, 4)
def forward(self, x):
return torch.nn.functional.linear(x, self.tensor)
ta = TensorAttribute()
traced = symbolic_trace(ta)
traced(torch.rand(4, 4))
class WrapperForQualname(torch.nn.Module):
def __init__(self):
super().__init__()
self.ta = TensorAttribute()
def forward(self, x):
return torch.nn.functional.linear(x, self.ta.tensor)
wfq = WrapperForQualname()
traced2 = symbolic_trace(wfq)
traced2.graph.lint()
traced2(torch.rand(4, 4))
def test_tensor_attribute_coalseced(self):
def count_attrs(fx_module):
targets = set()
for node in traced.graph.nodes:
if node.op == 'get_attr':
targets.add(node.target)
return len(targets)
val = torch.tensor(5)
def f(x):
return x + val + val
traced = symbolic_trace(f)
traced.graph.lint()
self.assertEqual(count_attrs(traced), 1)
val2 = torch.tensor(5)
def f(x):
val = torch.tensor(5)
return x + val + val2
traced = symbolic_trace(f)
traced.graph.lint()
self.assertEqual(count_attrs(traced), 2)
def test_symbolic_trace_sequential(self):
class Simple(torch.nn.Module):
def forward(self, x):
return torch.neg(x)
seq = torch.nn.Sequential(
Simple(),
Simple(),
Simple()
)
traced = symbolic_trace(seq)
traced.graph.lint()
x = torch.rand(3, 4)
self.assertEqual(traced(x), seq(x))
def test_tensor_constant(self):
class ConstTensor(torch.nn.Module):
def forward(self, x):
return torch.nn.functional.linear(x, torch.zeros(3, 4))
ct = ConstTensor()
traced = symbolic_trace(ct)
traced.graph.lint()
traced(torch.rand(4, 4))
def test_pickle_graphmodule(self):
class Nested(torch.nn.Module):
def __init__(self):
super().__init__()
self.st = torch.nn.Linear(4, 4)
def forward(self, x):
return self.st(x)
n = Nested()
traced = symbolic_trace(n)
traced.graph.lint()
pickled = pickle.dumps(traced)
loaded = pickle.loads(pickled)
loaded.graph.lint()
x = torch.rand(3, 4)
self.assertEqual(loaded(x), traced(x))
def test_pickle_custom_import(self):
graph = torch.fx.Graph()
a = graph.placeholder('x')
b = graph.placeholder('y')
c = graph.call_function(a_non_torch_leaf, (a, b))
d = graph.call_function(torch.sin, (c,))
graph.output(d)
gm = GraphModule(torch.nn.Module(), graph)
pickled = pickle.dumps(gm)
loaded = pickle.loads(pickled)
loaded.graph.lint()
x, y = torch.rand(1), torch.rand(1)
self.assertEqual(loaded(x, y), gm(x, y))
def test_all_input_nodes(self):
graph : torch.fx.Graph = torch.fx.Graph()
a : torch.fx.Node = graph.placeholder('x')
b : torch.fx.Node = graph.call_module('linear_mod', args=(a,))