forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_functionalization.py
1660 lines (1373 loc) · 74.3 KB
/
test_functionalization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Owner(s): ["module: codegen"]
import torch
from contextlib import nullcontext
from torch.testing._internal.common_utils import (
TestCase, run_tests, skipIfTorchDynamo, TEST_WITH_TORCHDYNAMO, IS_WINDOWS,
xfail_inherited_tests
)
from torch._subclasses.functional_tensor import FunctionalTensor, FunctionalTensorMode, dispatch_functionalize
from torch.testing._internal.logging_tensor import LoggingTensor, capture_logs
from torch.utils._pytree import tree_map_only, tree_flatten
from torch.fx.experimental.proxy_tensor import make_fx
from torch.fx.passes.reinplace import reinplace
from torch._dispatch.python import enable_crossref_functionalize, enable_python_dispatcher
from torch.multiprocessing.reductions import StorageWeakRef
import unittest
def are_aliased(x, y):
x_storage = StorageWeakRef(x.storage())
y_storage = StorageWeakRef(y.storage())
return x_storage == y_storage
# We can unify testing and use functionalize() here instead
# if/when functorch moves into core.
# This is basically a crappy version of `functionalize()`.
def _functionalize(f, *, reapply_views: bool, crossref: bool, skip_input_mutations: bool = False):
def to_fun(t: torch.Tensor):
func_t = torch._to_functional_tensor(t)
func_t.requires_grad = t.requires_grad
return func_t
def wrapped(*inputs):
ctx = nullcontext()
if crossref:
ctx = enable_crossref_functionalize()
with ctx:
inputs_functional = tree_map_only(torch.Tensor, to_fun, inputs)
torch._enable_functionalization(reapply_views=reapply_views)
try:
out = f(*inputs_functional)
finally:
torch._disable_functionalization()
flat_inputs, _ = tree_flatten(inputs)
flat_inputs_functional, _ = tree_flatten(inputs_functional)
for inpt, input_functional in zip(flat_inputs, flat_inputs_functional):
torch._sync(input_functional)
inpt_new = torch._from_functional_tensor(input_functional)
if inpt_new is not inpt and not skip_input_mutations:
# Existing deficiency in functionalize():
# we don't correctly mutate input metadata (yet?)
if inpt_new.shape == inpt.shape:
inpt.copy_(inpt_new)
tree_map_only(torch.Tensor, torch._sync, out)
out_unwrapped = tree_map_only(torch.Tensor, torch._from_functional_tensor, out)
return out_unwrapped
return wrapped
@unittest.skipIf(TEST_WITH_TORCHDYNAMO, "https://github.com/pytorch/pytorch/issues/81457")
class TestFunctionalization(TestCase):
crossref = False
def get_logs(self, func, *inpts, reapply_views=False, run_reinplace=False):
inpts_clone = tree_map_only(torch.Tensor, torch.clone, inpts)
traced_f = make_fx(_functionalize(func, reapply_views=reapply_views, crossref=self.crossref))(*inpts)
if run_reinplace:
traced_f = reinplace(traced_f, *inpts_clone)
return traced_f.code
def assert_functionalization(self, func, *inpts, reapply_views=False, mutated_input_metadata=False):
clones1 = tree_map_only(torch.Tensor, torch.clone, inpts)
clones2 = tree_map_only(torch.Tensor, torch.clone, inpts)
clones3 = tree_map_only(torch.Tensor, torch.clone, inpts)
# Compare outputs (and mutated inputs), with and without functionalization.
out_ref = func(*inpts)
out_functional = _functionalize(func, reapply_views=reapply_views, crossref=self.crossref)(*clones1)
# The reinplacing pass is only valid to run with reapply_views=True.
functional_func = make_fx(_functionalize(func, reapply_views=True, crossref=self.crossref))(*clones2)
reinplace_func = reinplace(functional_func, *clones2)
# NOTE: for now, need to pass in fresh inputs here, because make_fx
# will directly mutate the inputs that you trace with.
# Once this is fixed we can clean this up.
out_reinplace = reinplace_func(*clones3)
# functionalize() deficiency: input metadata mutations aren't propagated properly,
# so we just need to skip checks here for the tests that exercise that.
if not mutated_input_metadata:
flat_inpts, _ = tree_flatten(inpts)
flat_clones1, _ = tree_flatten(clones1)
flat_clones3, _ = tree_flatten(clones3)
for inpt, input_clone, input_clone3 in zip(flat_inpts, flat_clones1, flat_clones3):
self.assertEqual(inpt, input_clone) # input mutations should still occur
self.assertEqual(inpt, input_clone3)
# Handle tests with multi-tensor outputs
if isinstance(out_ref, tuple):
out_refs, out_functionals, out_reinplaces = list(out_ref), list(out_functional), list(out_reinplace)
else:
out_refs, out_functionals, out_reinplaces = [out_ref], [out_functional], [out_reinplace]
for out_ref_, out_functional_, out_reinplace_ in zip(out_refs, out_functionals, out_reinplaces):
self.assertEqual(out_ref_, out_functional_)
self.assertEqual(out_ref_, out_reinplace_)
def test_save_for_backwards_segfault(self):
inp = torch._to_functional_tensor(LoggingTensor(torch.randn(2, 2))).requires_grad_(True)
inp.exp()
def test_multiple_views_of_same_base(self):
def f(x):
y = x.view(-1)
z = x.view(-1)
x.add_(1)
# y should have been updated.
y2 = y + 1
# z should have been updated too.
z2 = z + 1
return z2
self.assert_functionalization(f, torch.ones(4))
def test_freeze(self):
def f(x):
y = x.clone()
z = y[0]
torch._freeze_functional_tensor(y)
x.add_(1)
self.assertRaises(RuntimeError, lambda: y.add_(1))
self.assertRaises(RuntimeError, lambda: z.add_(1))
return z
_functionalize(f, reapply_views=True, crossref=self.crossref)(torch.ones(3, 3))
def test_copy_stride_mismatch(self):
def f(x):
y = torch.empty_strided((2, 2), (5, 1))
y.copy_(x)
return y
r = _functionalize(f, reapply_views=True, crossref=self.crossref)(torch.ones(2, 2))
self.assertEqual(r.stride(), (5, 1))
def test_set_(self):
def f(x):
y = torch.ones(2)
y.set_(x.storage())
return y
# We should probaby get the crossref test to work,
# but fixing it for Storage() objects is annoying.
r = _functionalize(f, reapply_views=True, crossref=False)(torch.ones(2))
self.assertEqual(str(r.device), 'cpu')
def test_advanced_indexing(self):
def f():
x = torch.zeros(3, 3)
idx = torch.tensor([0])
val = torch.ones(3, 1)
x[:, idx] = val
return x
self.assert_functionalization(f)
def test_view_clone_view_inplace(self):
def f(input):
shape = [1, 1024, 128, 128]
input_reshaped = input.view(shape)
out = input_reshaped.clone()
r = out.view(input.shape)
r.relu_()
return r
def g(x):
loss = f(x).sum()
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
import torch.fx.traceback as fx_traceback
setup_stacktrace_preservation_hooks([loss.grad_fn])
with fx_traceback.preserve_node_meta():
loss.backward()
return x.grad
with torch.autograd.detect_anomaly(check_nan=False):
logs = self.get_logs(g, torch.ones(16, 64, 128, 128, requires_grad=True))
self.assertExpectedInline(logs, """\
def forward(self, arg0_1):
view_copy = torch.ops.aten.view_copy.default(arg0_1, [1, 1024, 128, 128]); arg0_1 = None
clone = torch.ops.aten.clone.default(view_copy); view_copy = None
view_copy_1 = torch.ops.aten.view_copy.default(clone, [16, 64, 128, 128])
relu = torch.ops.aten.relu.default(view_copy_1); view_copy_1 = None
view_copy_2 = torch.ops.aten.view_copy.default(relu, [1, 1024, 128, 128]); relu = None
view_copy_3 = torch.ops.aten.view_copy.default(view_copy_2, [16, 64, 128, 128]); view_copy_2 = None
view_copy_4 = torch.ops.aten.view_copy.default(clone, [16, 64, 128, 128]); clone = None
sum_1 = torch.ops.aten.sum.default(view_copy_3)
ones_like = torch.ops.aten.ones_like.default(sum_1, pin_memory = False, memory_format = torch.preserve_format); sum_1 = None
expand_copy = torch.ops.aten.expand_copy.default(ones_like, [16, 64, 128, 128]); ones_like = None
view_copy_5 = torch.ops.aten.view_copy.default(expand_copy, [1, 1024, 128, 128]); expand_copy = None
new_empty_strided = torch.ops.aten.new_empty_strided.default(view_copy_5, [1, 1024, 128, 128], [16777216, 16384, 128, 1])
copy = torch.ops.aten.copy.default(new_empty_strided, view_copy_5); new_empty_strided = view_copy_5 = None
view_copy_6 = torch.ops.aten.view_copy.default(copy, [16, 64, 128, 128])
view_copy_7 = torch.ops.aten.view_copy.default(copy, [16, 64, 128, 128])
clone_1 = torch.ops.aten.clone.default(view_copy_7, memory_format = torch.contiguous_format)
threshold_backward = torch.ops.aten.threshold_backward.default(clone_1, view_copy_3, 0); clone_1 = view_copy_3 = None
copy_1 = torch.ops.aten.copy.default(view_copy_7, threshold_backward); view_copy_7 = threshold_backward = None
view_copy_8 = torch.ops.aten.view_copy.default(copy_1, [1, 1024, 128, 128]); copy_1 = None
view_copy_9 = torch.ops.aten.view_copy.default(view_copy_8, [16, 64, 128, 128])
view_copy_10 = torch.ops.aten.view_copy.default(copy, [16, 64, 128, 128]); copy = None
detach_copy = torch.ops.aten.detach_copy.default(view_copy_10); view_copy_10 = None
view_copy_11 = torch.ops.aten.view_copy.default(view_copy_8, [16, 64, 128, 128]); view_copy_8 = None
detach_copy_1 = torch.ops.aten.detach_copy.default(view_copy_11); view_copy_11 = None
return detach_copy_1
""") # noqa: B950
def test_simple(self):
def f(x):
# simple test: 1 view op, 1 inplace op
tmp = torch.ones(4, 2)
y = x.view(4, 2)
y.add_(tmp)
z = x * x
return y
self.assert_functionalization(f, torch.ones(4, 2))
logs = self.get_logs(f, torch.ones(4, 2))
self.assertExpectedInline(logs, """\
def forward(self, arg0_1):
ones = torch.ops.aten.ones.default([4, 2], device = device(type='cpu'), pin_memory = False)
view_copy = torch.ops.aten.view_copy.default(arg0_1, [4, 2])
add = torch.ops.aten.add.Tensor(view_copy, ones); view_copy = ones = None
view_copy_1 = torch.ops.aten.view_copy.default(add, [4, 2]); add = None
view_copy_2 = torch.ops.aten.view_copy.default(view_copy_1, [4, 2])
mul = torch.ops.aten.mul.Tensor(view_copy_1, view_copy_1)
copy_ = torch.ops.aten.copy_.default(arg0_1, view_copy_1); arg0_1 = view_copy_1 = None
return view_copy_2
""")
reinplaced_logs = self.get_logs(f, torch.ones(4, 2), reapply_views=True, run_reinplace=True)
self.assertExpectedInline(reinplaced_logs, """\
def forward(self, arg0_1):
ones = torch.ops.aten.ones.default([4, 2], device = device(type='cpu'), pin_memory = False)
view = torch.ops.aten.view.default(arg0_1, [4, 2])
add = torch.ops.aten.add.Tensor(view, ones); view = ones = None
view_1 = torch.ops.aten.view.default(add, [4, 2]); add = None
view_2 = torch.ops.aten.view.default(view_1, [4, 2])
mul = torch.ops.aten.mul.Tensor(view_1, view_1)
copy_ = torch.ops.aten.copy_.default(arg0_1, view_1); arg0_1 = view_1 = None
return view_2
""")
def test_simple_out(self):
def f(x):
tmp = torch.ones(4, 2)
y = x.view(4, 2)
# the out= tensor will get resized, since it has size=0 to start.
z = torch.empty(())
torch.add(y, tmp, out=z)
w = z * z
return w
self.assert_functionalization(f, torch.ones(4, 2))
logs = self.get_logs(f, torch.ones(4, 2))
self.assertExpectedInline(logs, """\
def forward(self, arg0_1):
ones = torch.ops.aten.ones.default([4, 2], device = device(type='cpu'), pin_memory = False)
view_copy = torch.ops.aten.view_copy.default(arg0_1, [4, 2]); arg0_1 = None
empty = torch.ops.aten.empty.memory_format([], device = device(type='cpu'), pin_memory = False)
add = torch.ops.aten.add.Tensor(view_copy, ones); view_copy = ones = None
mul = torch.ops.aten.mul.Tensor(add, add); add = None
return mul
""")
reinplaced_logs = self.get_logs(f, torch.ones(4, 2), reapply_views=True, run_reinplace=True)
self.assertExpectedInline(reinplaced_logs, """\
def forward(self, arg0_1):
ones = torch.ops.aten.ones.default([4, 2], device = device(type='cpu'), pin_memory = False)
view = torch.ops.aten.view.default(arg0_1, [4, 2]); arg0_1 = None
empty = torch.ops.aten.empty.memory_format([], device = device(type='cpu'), pin_memory = False)
add = torch.ops.aten.add.Tensor(view, ones); view = ones = None
mul = torch.ops.aten.mul.Tensor(add, add); add = None
return mul
""")
def test_multi_out(self):
def f(x):
# aminmax.out returns a tuple of tensors.
# functionalization should properly handle the tuple.
out_min = torch.empty(4)
out_max = torch.empty(4)
torch.aminmax(x, dim=0, out=(out_max, out_min))
return out_max
self.assert_functionalization(f, torch.arange(8, dtype=torch.float32))
logs = self.get_logs(f, torch.arange(8, dtype=torch.float32))
self.assertExpectedInline(logs, """\
def forward(self, arg0_1):
empty = torch.ops.aten.empty.memory_format([4], device = device(type='cpu'), pin_memory = False)
empty_1 = torch.ops.aten.empty.memory_format([4], device = device(type='cpu'), pin_memory = False)
aminmax = torch.ops.aten.aminmax.default(arg0_1, dim = 0); arg0_1 = None
getitem = aminmax[0]
getitem_1 = aminmax[1]; aminmax = None
return getitem
""")
reinplaced_logs = self.get_logs(f, torch.arange(8, dtype=torch.float32), reapply_views=True, run_reinplace=True)
self.assertExpectedInline(reinplaced_logs, """\
def forward(self, arg0_1):
empty = torch.ops.aten.empty.memory_format([4], device = device(type='cpu'), pin_memory = False)
empty_1 = torch.ops.aten.empty.memory_format([4], device = device(type='cpu'), pin_memory = False)
aminmax = torch.ops.aten.aminmax.default(arg0_1, dim = 0); arg0_1 = None
getitem = aminmax[0]
getitem_1 = aminmax[1]; aminmax = None
return getitem
""")
def test_tensor_ctr(self):
def f(x):
y = torch.tensor((1, 2, 3))
z = y.view(-1)
z.add_(1)
return y
inpt = torch.arange(3, dtype=torch.float32)
self.assert_functionalization(f, inpt)
logs = self.get_logs(f, inpt)
self.assertExpectedInline(logs, """\
def forward(self, arg0_1):
_tensor_constant0 = self._tensor_constant0
lift_fresh_copy = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
view_copy = torch.ops.aten.view_copy.default(lift_fresh_copy, [-1]); lift_fresh_copy = None
add = torch.ops.aten.add.Tensor(view_copy, 1); view_copy = None
view_copy_1 = torch.ops.aten.view_copy.default(add, [3]); add = None
view_copy_2 = torch.ops.aten.view_copy.default(view_copy_1, [-1])
return view_copy_1
""")
reinplaced_logs = self.get_logs(f, inpt, reapply_views=True, run_reinplace=True)
self.assertExpectedInline(reinplaced_logs, """\
def forward(self, arg0_1):
_tensor_constant0 = self._tensor_constant0
lift_fresh_copy = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
view = torch.ops.aten.view.default(lift_fresh_copy, [-1]); lift_fresh_copy = None
add = torch.ops.aten.add_.Tensor(view, 1)
view_1 = torch.ops.aten.view.default(view, [3]); view = None
view_2 = torch.ops.aten.view.default(view_1, [-1])
return view_1
""")
def test_advanced_indexing_correct_strides(self):
def f(a):
# This test requires that *_scatter ops are able to return
# non-contiguous tensors.
b = a.clone()[:, 1]
c = torch.ones_like(b, dtype=torch.bool)
d = b.masked_fill_(c, 0)
return d
self.assert_functionalization(f, torch.ones(2, 2), reapply_views=True)
def test_tensor_list_mixed_functional_nonfunctional(self):
nonfunctional_tensor = torch.ones(2, dtype=torch.long)
def f(x):
# simple test: 1 view op, 1 inplace op
functional_tensor = torch.ones(2, dtype=torch.long)
out = x[functional_tensor, nonfunctional_tensor]
return out
out = f(torch.ones(2, 2))
out_functional = _functionalize(f, reapply_views=True, crossref=self.crossref)(torch.ones(2, 2))
self.assertEqual(out, out_functional)
def test_inplace_on_non_view(self):
def f(x):
# test for the case where we functionalize an inplace op on the other tensor - not a view.
# This is worth checking because the tensor will have an empty ViewMeta stack, which needs to be special cased.
tmp = torch.ones(4, 2)
y = x.view(4, 2)
x.add_(tmp)
return y
self.assert_functionalization(f, torch.ones(4, 2))
logs = self.get_logs(f, torch.ones(4, 2))
self.assertExpectedInline(logs, """\
def forward(self, arg0_1):
ones = torch.ops.aten.ones.default([4, 2], device = device(type='cpu'), pin_memory = False)
view_copy = torch.ops.aten.view_copy.default(arg0_1, [4, 2])
add = torch.ops.aten.add.Tensor(arg0_1, ones); ones = None
copy_ = torch.ops.aten.copy_.default(arg0_1, add); arg0_1 = None
view_copy_1 = torch.ops.aten.view_copy.default(add, [4, 2]); add = None
return view_copy_1
""")
reinplaced_logs = self.get_logs(f, torch.ones(4, 2), reapply_views=True, run_reinplace=True)
self.assertExpectedInline(reinplaced_logs, """\
def forward(self, arg0_1):
ones = torch.ops.aten.ones.default([4, 2], device = device(type='cpu'), pin_memory = False)
view = torch.ops.aten.view.default(arg0_1, [4, 2])
add = torch.ops.aten.add.Tensor(arg0_1, ones); ones = None
copy_ = torch.ops.aten.copy_.default(arg0_1, add); arg0_1 = None
view_1 = torch.ops.aten.view.default(add, [4, 2]); add = None
return view_1
""")
# Some ops that are mutable are neither inplace nor out= ops.
# They also need special handling.
def test_mutable_op_not_inplace_or_other(self):
def f(x):
return torch._fused_moving_avg_obs_fq_helper(x, x, x, x, x, x, x, 1.0, 0, 1, 0)
logs = self.get_logs(f, torch.ones(1))
self.assertExpectedInline(logs, """\
def forward(self, arg0_1):
_fused_moving_avg_obs_fq_helper_functional = torch.ops.aten._fused_moving_avg_obs_fq_helper_functional.default(arg0_1, arg0_1, arg0_1, arg0_1, arg0_1, arg0_1, arg0_1, 1.0, 0, 1, 0)
getitem = _fused_moving_avg_obs_fq_helper_functional[0]
getitem_1 = _fused_moving_avg_obs_fq_helper_functional[1]
getitem_2 = _fused_moving_avg_obs_fq_helper_functional[2]
getitem_3 = _fused_moving_avg_obs_fq_helper_functional[3]
getitem_4 = _fused_moving_avg_obs_fq_helper_functional[4]
getitem_5 = _fused_moving_avg_obs_fq_helper_functional[5]; _fused_moving_avg_obs_fq_helper_functional = None
copy_ = torch.ops.aten.copy_.default(arg0_1, getitem_5); arg0_1 = getitem_5 = None
return (getitem, getitem_1)
""") # noqa: B950
def test_as_strided(self):
def f(x):
y = x.as_strided((2,), (2,), 1)
y.add_(1)
return x
self.assert_functionalization(f, torch.ones(9))
logs = self.get_logs(f, torch.ones(9))
self.assertExpectedInline(logs, """\
def forward(self, arg0_1):
as_strided_copy = torch.ops.aten.as_strided_copy.default(arg0_1, [2], [2], 1)
add = torch.ops.aten.add.Tensor(as_strided_copy, 1); as_strided_copy = None
as_strided_scatter = torch.ops.aten.as_strided_scatter.default(arg0_1, add, [2], [2], 1); add = None
as_strided_copy_1 = torch.ops.aten.as_strided_copy.default(as_strided_scatter, [2], [2], 1)
copy_ = torch.ops.aten.copy_.default(arg0_1, as_strided_scatter); arg0_1 = None
return as_strided_scatter
""")
def test_tensor_list_composite(self):
def f(x):
# Test an op with TensorList input
y = torch.block_diag(x, x)
return y
self.assert_functionalization(f, torch.ones(2, 2))
logs = self.get_logs(f, torch.ones(2, 2))
self.assertExpectedInline(logs, """\
def forward(self, arg0_1):
block_diag = torch.ops.aten.block_diag.default([arg0_1, arg0_1]); arg0_1 = None
return block_diag
""")
def test_cat(self):
def f(x):
out = torch.empty(0)
torch.cat((x,), out=out)
return out
self.assert_functionalization(f, torch.ones(2, 2))
logs = self.get_logs(f, torch.ones(2, 2))
self.assertExpectedInline(logs, """\
def forward(self, arg0_1):
empty = torch.ops.aten.empty.memory_format([0], device = device(type='cpu'), pin_memory = False)
cat = torch.ops.aten.cat.default([arg0_1]); arg0_1 = None
return cat
""")
reinplaced_logs = self.get_logs(f, torch.ones(2, 2), reapply_views=True, run_reinplace=True)
self.assertExpectedInline(reinplaced_logs, """\
def forward(self, arg0_1):
empty = torch.ops.aten.empty.memory_format([0], device = device(type='cpu'), pin_memory = False)
cat = torch.ops.aten.cat.default([arg0_1]); arg0_1 = None
return cat
""")
def test_diagonal(self):
def f(x):
# test: view ops that take a subset of the original tensor (select/diagonal)
tmp = torch.ones(2)
y = x.clone().diagonal()
y.add_(tmp)
z = x * x
return z
self.assert_functionalization(f, torch.ones(2, 2))
logs = self.get_logs(f, torch.ones(2, 2))
self.assertExpectedInline(logs, """\
def forward(self, arg0_1):
ones = torch.ops.aten.ones.default([2], device = device(type='cpu'), pin_memory = False)
clone = torch.ops.aten.clone.default(arg0_1)
diagonal_copy = torch.ops.aten.diagonal_copy.default(clone)
add = torch.ops.aten.add.Tensor(diagonal_copy, ones); diagonal_copy = ones = None
diagonal_scatter = torch.ops.aten.diagonal_scatter.default(clone, add); clone = add = None
diagonal_copy_1 = torch.ops.aten.diagonal_copy.default(diagonal_scatter); diagonal_scatter = None
mul = torch.ops.aten.mul.Tensor(arg0_1, arg0_1); arg0_1 = None
return mul
""")
reinplaced_logs = self.get_logs(f, torch.ones(2, 2), reapply_views=True, run_reinplace=True)
self.assertExpectedInline(reinplaced_logs, """\
def forward(self, arg0_1):
ones = torch.ops.aten.ones.default([2], device = device(type='cpu'), pin_memory = False)
clone = torch.ops.aten.clone.default(arg0_1)
diagonal = torch.ops.aten.diagonal.default(clone)
add = torch.ops.aten.add_.Tensor(diagonal, ones); diagonal = ones = None
diagonal_1 = torch.ops.aten.diagonal.default(clone); clone = None
mul = torch.ops.aten.mul.Tensor(arg0_1, arg0_1); arg0_1 = None
return mul
""")
def test_diagonal_mutated_input(self):
def f(x):
# simple test: there are pending updates afterwards, which the test syncs manually
tmp = torch.ones(2)
y = x.diagonal()
y.add_(tmp)
return x
x = torch.ones(2, 2)
self.assert_functionalization(f, x)
logs = self.get_logs(f, torch.ones(2, 2))
self.assertExpectedInline(logs, """\
def forward(self, arg0_1):
ones = torch.ops.aten.ones.default([2], device = device(type='cpu'), pin_memory = False)
diagonal_copy = torch.ops.aten.diagonal_copy.default(arg0_1)
add = torch.ops.aten.add.Tensor(diagonal_copy, ones); diagonal_copy = ones = None
diagonal_scatter = torch.ops.aten.diagonal_scatter.default(arg0_1, add); add = None
diagonal_copy_1 = torch.ops.aten.diagonal_copy.default(diagonal_scatter)
copy_ = torch.ops.aten.copy_.default(arg0_1, diagonal_scatter); arg0_1 = None
return diagonal_scatter
""")
def test_channels_last_contiguous(self):
def f(x):
return x.contiguous(memory_format=torch.channels_last)
tmp = torch.ones(2)
y = x.diagonal()
y.add_(tmp)
return x
x = torch.randn(4, 8, 8, 3).permute(0, 3, 1, 2)
self.assert_functionalization(f, x)
logs = self.get_logs(f, x).strip()
# There should be no clone in the graph
self.assertExpectedInline(logs, """\
def forward(self, arg0_1):
return arg0_1""")
def test_split(self):
def f(x):
# test: view ops that return multiple tensors (split)
tmp = torch.ones(2)
y1, y2 = x.split(2)
y3 = y2.diagonal()
y3.add_(tmp)
z = x * x
return y3
self.assert_functionalization(f, torch.ones(4, 2))
logs = self.get_logs(f, torch.ones(4, 2))
self.assertExpectedInline(logs, """\
def forward(self, arg0_1):
ones = torch.ops.aten.ones.default([2], device = device(type='cpu'), pin_memory = False)
split_copy = torch.ops.aten.split_copy.Tensor(arg0_1, 2)
getitem = split_copy[0]
getitem_1 = split_copy[1]; split_copy = None
diagonal_copy = torch.ops.aten.diagonal_copy.default(getitem_1); getitem_1 = None
add = torch.ops.aten.add.Tensor(diagonal_copy, ones); diagonal_copy = ones = None
split_copy_1 = torch.ops.aten.split_copy.Tensor(arg0_1, 2)
getitem_2 = split_copy_1[0]
getitem_3 = split_copy_1[1]; split_copy_1 = None
diagonal_scatter = torch.ops.aten.diagonal_scatter.default(getitem_3, add); getitem_3 = add = None
slice_scatter = torch.ops.aten.slice_scatter.default(arg0_1, diagonal_scatter, 0, 2, 4); diagonal_scatter = None
split_copy_2 = torch.ops.aten.split_copy.Tensor(slice_scatter, 2)
getitem_4 = split_copy_2[0]
getitem_5 = split_copy_2[1]; split_copy_2 = None
diagonal_copy_1 = torch.ops.aten.diagonal_copy.default(getitem_5); getitem_5 = None
mul = torch.ops.aten.mul.Tensor(slice_scatter, slice_scatter)
copy_ = torch.ops.aten.copy_.default(arg0_1, slice_scatter); arg0_1 = slice_scatter = None
return diagonal_copy_1
""") # noqa: B950
def test_view_inplace(self):
def f(x):
# test: view + inplace op (transpose_)
tmp = torch.ones(4)
x.transpose_(1, 0)
y = x[0]
y.add_(tmp)
return x
self.assert_functionalization(f, torch.ones(4, 2), mutated_input_metadata=True)
logs = self.get_logs(f, torch.ones(4, 2))
self.assertExpectedInline(logs, """\
def forward(self, arg0_1):
ones = torch.ops.aten.ones.default([4], device = device(type='cpu'), pin_memory = False)
transpose_copy = torch.ops.aten.transpose_copy.int(arg0_1, 1, 0)
select_copy = torch.ops.aten.select_copy.int(transpose_copy, 0, 0); transpose_copy = None
add = torch.ops.aten.add.Tensor(select_copy, ones); select_copy = ones = None
transpose_copy_1 = torch.ops.aten.transpose_copy.int(arg0_1, 1, 0); arg0_1 = None
select_scatter = torch.ops.aten.select_scatter.default(transpose_copy_1, add, 0, 0); transpose_copy_1 = add = None
transpose_copy_2 = torch.ops.aten.transpose_copy.int(select_scatter, 1, 0); select_scatter = None
transpose_copy_3 = torch.ops.aten.transpose_copy.int(transpose_copy_2, 1, 0)
select_copy_1 = torch.ops.aten.select_copy.int(transpose_copy_3, 0, 0); transpose_copy_3 = None
transpose_copy_4 = torch.ops.aten.transpose_copy.int(transpose_copy_2, 1, 0); transpose_copy_2 = None
return transpose_copy_4
""") # noqa: B950
def test_optional_tensor_list(self):
def f(x):
# test: an operator that takes in a List[Optional[Tensor]] argument
# (index_put)
y = x.view(8)
indices = torch.arange(4)
values = torch.arange(4, dtype=y.dtype)
y.index_put_((indices,), values, accumulate=False)
return y
self.assert_functionalization(f, torch.ones(4, 2))
logs = self.get_logs(f, torch.ones(4, 2))
self.assertExpectedInline(logs, """\
def forward(self, arg0_1):
view_copy = torch.ops.aten.view_copy.default(arg0_1, [8])
arange = torch.ops.aten.arange.default(4, device = device(type='cpu'), pin_memory = False)
arange_1 = torch.ops.aten.arange.default(4, dtype = torch.float32, device = device(type='cpu'), pin_memory = False)
index_put = torch.ops.aten.index_put.default(view_copy, [arange], arange_1); view_copy = arange = arange_1 = None
view_copy_1 = torch.ops.aten.view_copy.default(index_put, [4, 2]); index_put = None
view_copy_2 = torch.ops.aten.view_copy.default(view_copy_1, [8])
copy_ = torch.ops.aten.copy_.default(arg0_1, view_copy_1); arg0_1 = view_copy_1 = None
return view_copy_2
""") # noqa: B950
def test_scalars(self):
def f(x):
# test: the pass can handle scalar inputs properly
tmp = torch.ones(4, 2)
y = x.view(4, 2)
y.add_(1)
z = 2 * y
z.div_(1)
return z
self.assert_functionalization(f, torch.ones(4, 2))
logs = self.get_logs(f, torch.ones(4, 2))
self.assertExpectedInline(logs, """\
def forward(self, arg0_1):
ones = torch.ops.aten.ones.default([4, 2], device = device(type='cpu'), pin_memory = False)
view_copy = torch.ops.aten.view_copy.default(arg0_1, [4, 2])
add = torch.ops.aten.add.Tensor(view_copy, 1); view_copy = None
view_copy_1 = torch.ops.aten.view_copy.default(add, [4, 2]); add = None
view_copy_2 = torch.ops.aten.view_copy.default(view_copy_1, [4, 2])
mul = torch.ops.aten.mul.Tensor(view_copy_2, 2); view_copy_2 = None
div = torch.ops.aten.div.Tensor(mul, 1); mul = None
copy_ = torch.ops.aten.copy_.default(arg0_1, view_copy_1); arg0_1 = view_copy_1 = None
return div
""")
@skipIfTorchDynamo("Test does not work with TorchDynamo")
def test_metadata_change(self):
def f(x):
# ops like ge_() are allowed to change the dtype of the input.
# functionalization should pick up on that.
y = x.clone()
out = y.ge_(0)
return out
self.assert_functionalization(f, torch.ones(4, 2))
logs = self.get_logs(f, torch.ones(4, 2))
self.assertExpectedInline(logs, """\
def forward(self, arg0_1):
clone = torch.ops.aten.clone.default(arg0_1); arg0_1 = None
ge = torch.ops.aten.ge.Scalar(clone, 0); clone = None
_to_copy = torch.ops.aten._to_copy.default(ge, dtype = torch.float32, layout = torch.strided); ge = None
return _to_copy
""")
reinplaced_logs = self.get_logs(f, torch.ones(2, 2), reapply_views=True, run_reinplace=True)
self.assertExpectedInline(reinplaced_logs, """\
def forward(self, arg0_1):
clone = torch.ops.aten.clone.default(arg0_1); arg0_1 = None
ge = torch.ops.aten.ge.Scalar(clone, 0); clone = None
_to_copy = torch.ops.aten._to_copy.default(ge, dtype = torch.float32, layout = torch.strided); ge = None
return _to_copy
""") # noqa: B950
@skipIfTorchDynamo("Test does not work with TorchDynamo")
def test_metadata_change_out_op(self):
def f(t, y):
out_1 = torch.ones(1)
return torch.add(t, y, out=out_1)
inpt1, inpt2 = torch.tensor([1]), torch.tensor([1])
inpt1_func, inpt2_func = torch._to_functional_tensor(inpt1), torch._to_functional_tensor(inpt2)
out_ref = f(inpt1, inpt2)
torch._enable_functionalization(reapply_views=True)
try:
out_functional = f(inpt1_func, inpt2_func)
finally:
torch._disable_functionalization()
self.assertEqual(out_ref, torch._from_functional_tensor(out_functional))
def test_only_one_view(self):
def f(x):
# This tests that we don't have any unnecessary views in the trace.
# If the input wasn't mutated, we don't need to regenerate it,
# so there should be a total of 1 op in the output trace.
return x.view(4, 2)
logs = self.get_logs(f, torch.ones(4, 2))
self.assertExpectedInline(logs, """\
def forward(self, arg0_1):
view_copy = torch.ops.aten.view_copy.default(arg0_1, [4, 2]); arg0_1 = None
return view_copy
""")
def test_everything(self):
def f(x):
# test: everything
tmp = torch.ones(2, 2)
x2 = x + x
y = x2.view(8)
z0 = y.reshape(2, 4)
z1 = z0.transpose(1, 0)
z1.unsqueeze_(0)
z1.squeeze_()
z2, z3 = z1.split(2)
z2.add_(tmp)
z4 = z0[0] + z2.reshape(4)
return z2
self.assert_functionalization(f, torch.ones(4, 2))
logs = self.get_logs(f, torch.ones(4, 2))
self.assertExpectedInline(logs, """\
def forward(self, arg0_1):
ones = torch.ops.aten.ones.default([2, 2], device = device(type='cpu'), pin_memory = False)
add = torch.ops.aten.add.Tensor(arg0_1, arg0_1); arg0_1 = None
view_copy = torch.ops.aten.view_copy.default(add, [8])
view_copy_1 = torch.ops.aten.view_copy.default(view_copy, [2, 4]); view_copy = None
transpose_copy = torch.ops.aten.transpose_copy.int(view_copy_1, 1, 0)
unsqueeze_copy = torch.ops.aten.unsqueeze_copy.default(transpose_copy, 0); transpose_copy = None
squeeze_copy = torch.ops.aten.squeeze_copy.default(unsqueeze_copy); unsqueeze_copy = None
split_copy = torch.ops.aten.split_copy.Tensor(squeeze_copy, 2); squeeze_copy = None
getitem = split_copy[0]
getitem_1 = split_copy[1]; split_copy = None
add_1 = torch.ops.aten.add.Tensor(getitem, ones); getitem = ones = None
view_copy_2 = torch.ops.aten.view_copy.default(add, [8]); add = None
view_copy_3 = torch.ops.aten.view_copy.default(view_copy_2, [2, 4]); view_copy_2 = None
transpose_copy_1 = torch.ops.aten.transpose_copy.int(view_copy_3, 1, 0); view_copy_3 = None
unsqueeze_copy_1 = torch.ops.aten.unsqueeze_copy.default(transpose_copy_1, 0); transpose_copy_1 = None
squeeze_copy_1 = torch.ops.aten.squeeze_copy.default(unsqueeze_copy_1); unsqueeze_copy_1 = None
slice_scatter = torch.ops.aten.slice_scatter.default(squeeze_copy_1, add_1, 0, 0, 2); squeeze_copy_1 = add_1 = None
unsqueeze_copy_2 = torch.ops.aten.unsqueeze_copy.default(slice_scatter, 0); slice_scatter = None
squeeze_copy_2 = torch.ops.aten.squeeze_copy.dim(unsqueeze_copy_2, 0); unsqueeze_copy_2 = None
transpose_copy_2 = torch.ops.aten.transpose_copy.int(squeeze_copy_2, 1, 0); squeeze_copy_2 = None
view_copy_4 = torch.ops.aten.view_copy.default(transpose_copy_2, [8]); transpose_copy_2 = None
view_copy_5 = torch.ops.aten.view_copy.default(view_copy_4, [4, 2]); view_copy_4 = None
view_copy_6 = torch.ops.aten.view_copy.default(view_copy_5, [8])
view_copy_7 = torch.ops.aten.view_copy.default(view_copy_6, [2, 4]); view_copy_6 = None
transpose_copy_3 = torch.ops.aten.transpose_copy.int(view_copy_7, 1, 0); view_copy_7 = None
unsqueeze_copy_3 = torch.ops.aten.unsqueeze_copy.default(transpose_copy_3, 0); transpose_copy_3 = None
squeeze_copy_3 = torch.ops.aten.squeeze_copy.default(unsqueeze_copy_3); unsqueeze_copy_3 = None
split_copy_1 = torch.ops.aten.split_copy.Tensor(squeeze_copy_3, 2); squeeze_copy_3 = None
getitem_2 = split_copy_1[0]
getitem_3 = split_copy_1[1]; split_copy_1 = None
select_copy = torch.ops.aten.select_copy.int(view_copy_1, 0, 0); view_copy_1 = None
view_copy_8 = torch.ops.aten.view_copy.default(getitem_2, [4])
view_copy_9 = torch.ops.aten.view_copy.default(view_copy_5, [8])
view_copy_10 = torch.ops.aten.view_copy.default(view_copy_9, [2, 4]); view_copy_9 = None
select_copy_1 = torch.ops.aten.select_copy.int(view_copy_10, 0, 0); view_copy_10 = None
view_copy_11 = torch.ops.aten.view_copy.default(view_copy_5, [8]); view_copy_5 = None
view_copy_12 = torch.ops.aten.view_copy.default(view_copy_11, [2, 4]); view_copy_11 = None
transpose_copy_4 = torch.ops.aten.transpose_copy.int(view_copy_12, 1, 0); view_copy_12 = None
unsqueeze_copy_4 = torch.ops.aten.unsqueeze_copy.default(transpose_copy_4, 0); transpose_copy_4 = None
squeeze_copy_4 = torch.ops.aten.squeeze_copy.default(unsqueeze_copy_4); unsqueeze_copy_4 = None
split_copy_2 = torch.ops.aten.split_copy.Tensor(squeeze_copy_4, 2); squeeze_copy_4 = None
getitem_4 = split_copy_2[0]
getitem_5 = split_copy_2[1]; split_copy_2 = None
view_copy_13 = torch.ops.aten.view_copy.default(getitem_4, [4]); getitem_4 = None
add_2 = torch.ops.aten.add.Tensor(select_copy_1, view_copy_13); select_copy_1 = view_copy_13 = None
return getitem_2
""") # noqa: B950
reinplaced_logs = self.get_logs(f, torch.ones(4, 2), reapply_views=True, run_reinplace=True)
self.assertExpectedInline(reinplaced_logs, """\
def forward(self, arg0_1):
ones = torch.ops.aten.ones.default([2, 2], device = device(type='cpu'), pin_memory = False)
add = torch.ops.aten.add.Tensor(arg0_1, arg0_1); arg0_1 = None
view = torch.ops.aten.view.default(add, [8])
view_1 = torch.ops.aten.view.default(view, [2, 4]); view = None
transpose = torch.ops.aten.transpose.int(view_1, 1, 0)
unsqueeze = torch.ops.aten.unsqueeze.default(transpose, 0); transpose = None
squeeze = torch.ops.aten.squeeze.default(unsqueeze); unsqueeze = None
split = torch.ops.aten.split.Tensor(squeeze, 2); squeeze = None
getitem = split[0]
getitem_1 = split[1]; split = None
add_1 = torch.ops.aten.add_.Tensor(getitem, ones); getitem = ones = None
view_2 = torch.ops.aten.view.default(add, [8]); add = None
view_3 = torch.ops.aten.view.default(view_2, [2, 4]); view_2 = None
transpose_1 = torch.ops.aten.transpose.int(view_3, 1, 0); view_3 = None
unsqueeze_1 = torch.ops.aten.unsqueeze.default(transpose_1, 0); transpose_1 = None
squeeze_1 = torch.ops.aten.squeeze.default(unsqueeze_1); unsqueeze_1 = None
unsqueeze_2 = torch.ops.aten.unsqueeze.default(squeeze_1, 0); squeeze_1 = None
squeeze_2 = torch.ops.aten.squeeze.dim(unsqueeze_2, 0); unsqueeze_2 = None
transpose_2 = torch.ops.aten.transpose.int(squeeze_2, 1, 0); squeeze_2 = None
view_4 = torch.ops.aten.view.default(transpose_2, [8]); transpose_2 = None
view_5 = torch.ops.aten.view.default(view_4, [4, 2]); view_4 = None
view_6 = torch.ops.aten.view.default(view_5, [8])
view_7 = torch.ops.aten.view.default(view_6, [2, 4]); view_6 = None
transpose_3 = torch.ops.aten.transpose.int(view_7, 1, 0); view_7 = None
unsqueeze_3 = torch.ops.aten.unsqueeze.default(transpose_3, 0); transpose_3 = None
squeeze_3 = torch.ops.aten.squeeze.default(unsqueeze_3); unsqueeze_3 = None
split_1 = torch.ops.aten.split.Tensor(squeeze_3, 2); squeeze_3 = None
getitem_2 = split_1[0]
getitem_3 = split_1[1]; split_1 = None
select = torch.ops.aten.select.int(view_1, 0, 0); view_1 = None
clone = torch.ops.aten.clone.default(getitem_2, memory_format = torch.contiguous_format)
_unsafe_view = torch.ops.aten._unsafe_view.default(clone, [4]); clone = None
view_8 = torch.ops.aten.view.default(view_5, [8]); view_5 = None
view_9 = torch.ops.aten.view.default(view_8, [2, 4]); view_8 = None
select_1 = torch.ops.aten.select.int(view_9, 0, 0); view_9 = None
add_2 = torch.ops.aten.add.Tensor(select_1, _unsafe_view); select_1 = _unsafe_view = None
return getitem_2
""")
def test_reapply_views_simple(self):
def f(x):
tmp = torch.ones(4, 2)
y = x.view(4, 2)
y.add_(tmp)
z = x * x
return y
self.assert_functionalization(f, torch.ones(4, 2), reapply_views=True)
logs = self.get_logs(f, torch.ones(4, 2), reapply_views=True)
self.assertExpectedInline(logs, """\
def forward(self, arg0_1):
ones = torch.ops.aten.ones.default([4, 2], device = device(type='cpu'), pin_memory = False)
view = torch.ops.aten.view.default(arg0_1, [4, 2])
add = torch.ops.aten.add.Tensor(view, ones); view = ones = None
view_1 = torch.ops.aten.view.default(add, [4, 2]); add = None
view_2 = torch.ops.aten.view.default(view_1, [4, 2])
mul = torch.ops.aten.mul.Tensor(view_1, view_1)
copy_ = torch.ops.aten.copy_.default(arg0_1, view_1); arg0_1 = view_1 = None
return view_2
""")
def test_aliases_maintained_after_pass_when_reapplying_views(self):
def f(x):
tmp = torch.ones(4, 2)
y = x.view(4, 2)
z = x.view(4, 2)
y.add_(tmp)
return y, z
input_functional = torch._to_functional_tensor(torch.ones(4, 2))
torch._enable_functionalization(reapply_views=True)
try:
y, z = f(input_functional)
torch._sync(y)
torch._sync(z)
finally:
torch._disable_functionalization()
# y and z are aliases inside of the function, and that aliasing relationship should be maintained.
_y = torch._from_functional_tensor(y)
_z = torch._from_functional_tensor(z)
self.assertTrue(are_aliased(_y, _z))
# copy_() gets its own test, because it used to be special cased in functionalization.
# However, now it works pretty similar to other functional ops
def test_copy_(self):
def f(x):
tmp = torch.zeros(2, 2)
tmp_slice = tmp.diagonal()
y = tmp_slice.copy_(x)
z = y.add_(x)
return z
# Test 1: copy_() with same dtype and shape
# to() is a composite op that noops when the dtype/shape match, so nothing gets logged.
# self.assert_functionalization(f, torch.ones(2))
logs = self.get_logs(f, torch.ones(2))
self.assertExpectedInline(logs, """\
def forward(self, arg0_1):
zeros = torch.ops.aten.zeros.default([2, 2], device = device(type='cpu'), pin_memory = False)
diagonal_copy = torch.ops.aten.diagonal_copy.default(zeros)
copy = torch.ops.aten.copy.default(diagonal_copy, arg0_1); diagonal_copy = None
diagonal_scatter = torch.ops.aten.diagonal_scatter.default(zeros, copy); zeros = copy = None
diagonal_copy_1 = torch.ops.aten.diagonal_copy.default(diagonal_scatter)
add = torch.ops.aten.add.Tensor(diagonal_copy_1, arg0_1); diagonal_copy_1 = arg0_1 = None
diagonal_scatter_1 = torch.ops.aten.diagonal_scatter.default(diagonal_scatter, add); diagonal_scatter = add = None
diagonal_copy_2 = torch.ops.aten.diagonal_copy.default(diagonal_scatter_1); diagonal_scatter_1 = None
return diagonal_copy_2
""")
reinplaced_logs = self.get_logs(f, torch.ones(2), reapply_views=True, run_reinplace=True)
self.assertExpectedInline(reinplaced_logs, """\
def forward(self, arg0_1):
zeros = torch.ops.aten.zeros.default([2, 2], device = device(type='cpu'), pin_memory = False)
diagonal = torch.ops.aten.diagonal.default(zeros)
copy = torch.ops.aten.copy_.default(diagonal, arg0_1); diagonal = None
diagonal_1 = torch.ops.aten.diagonal.default(zeros)
add = torch.ops.aten.add_.Tensor(diagonal_1, arg0_1); diagonal_1 = arg0_1 = None
diagonal_2 = torch.ops.aten.diagonal.default(zeros); zeros = None
return diagonal_2
""")
# Test 2: copy_() with same dtype, different shape
self.assert_functionalization(f, torch.ones(1))
logs = self.get_logs(f, torch.ones(1))
self.assertExpectedInline(logs, """\
def forward(self, arg0_1):
zeros = torch.ops.aten.zeros.default([2, 2], device = device(type='cpu'), pin_memory = False)