forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
conf.py
788 lines (680 loc) · 22.7 KB
/
conf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
#
# PyTorch documentation build configuration file, created by
# sphinx-quickstart on Fri Dec 23 13:31:47 2016.
#
# This file is execfile()d with the current directory set to its
# containing dir.
#
# Note that not all possible configuration values are present in this
# autogenerated file.
#
# All configuration values have a default; values that are commented out
# serve to show the default.
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
import os
# import sys
import pkgutil
import re
from os import path
# source code directory, relative to this file, for sphinx-autobuild
# sys.path.insert(0, os.path.abspath('../..'))
import torch
try:
import torchvision # noqa: F401
except ImportError:
import warnings
warnings.warn('unable to load "torchvision" package')
RELEASE = os.environ.get("RELEASE", False)
import pytorch_sphinx_theme
# -- General configuration ------------------------------------------------
# If your documentation needs a minimal Sphinx version, state it here.
#
needs_sphinx = "3.1.2"
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = [
"sphinx.ext.autodoc",
"sphinx.ext.autosummary",
"sphinx.ext.doctest",
"sphinx.ext.intersphinx",
"sphinx.ext.todo",
"sphinx.ext.coverage",
"sphinx.ext.napoleon",
"sphinx.ext.viewcode",
"sphinxcontrib.katex",
"sphinx.ext.autosectionlabel",
"sphinx_copybutton",
"sphinx_panels",
"myst_parser",
]
# build the templated autosummary files
autosummary_generate = True
numpydoc_show_class_members = False
# Theme has bootstrap already
panels_add_bootstrap_css = False
# autosectionlabel throws warnings if section names are duplicated.
# The following tells autosectionlabel to not throw a warning for
# duplicated section names that are in different documents.
autosectionlabel_prefix_document = True
# katex options
#
#
katex_prerender = True
napoleon_use_ivar = True
# Add any paths that contain templates here, relative to this directory.
templates_path = ["_templates"]
# TODO: document these and remove them from here.
coverage_ignore_functions = [
# torch
"typename",
# torch.autograd
"register_py_tensor_class_for_device",
"variable",
# torch.cuda
"check_error",
"cudart",
"is_bf16_supported",
# torch.cuda._sanitizer
"zip_arguments",
"zip_by_key",
# torch.distributed.autograd
"is_available",
# torch.distributed.elastic.events
"construct_and_record_rdzv_event",
"record_rdzv_event",
# torch.distributed.elastic.metrics
"initialize_metrics",
# torch.distributed.elastic.rendezvous.registry
"get_rendezvous_handler",
# torch.distributed.launch
"launch",
"main",
"parse_args",
# torch.distributed.rpc
"is_available",
# torch.distributed.run
"config_from_args",
"determine_local_world_size",
"get_args_parser",
"get_rdzv_endpoint",
"get_use_env",
"main",
"parse_args",
"parse_min_max_nnodes",
"run",
"run_script_path",
# torch.distributions.constraints
"is_dependent",
# torch.hub
"import_module",
# torch.jit
"export_opnames",
# torch.jit.unsupported_tensor_ops
"execWrapper",
# torch.onnx
"unregister_custom_op_symbolic",
# torch.ao.quantization
"default_eval_fn",
# torch.backends
"disable_global_flags",
"flags_frozen",
# torch.distributed.algorithms.ddp_comm_hooks
"register_ddp_comm_hook",
# torch.nn
"factory_kwargs",
# torch.nn.parallel
"DistributedDataParallelCPU",
# torch.utils
"set_module",
# torch.utils.model_dump
"burn_in_info",
"get_info_and_burn_skeleton",
"get_inline_skeleton",
"get_model_info",
"get_storage_info",
"hierarchical_pickle",
]
coverage_ignore_classes = [
# torch
"FatalError",
"QUInt2x4Storage",
"Size",
"Storage",
"Stream",
"Tensor",
"finfo",
"iinfo",
"qscheme",
"AggregationType",
"AliasDb",
"AnyType",
"Argument",
"ArgumentSpec",
"AwaitType",
"BenchmarkConfig",
"BenchmarkExecutionStats",
"Block",
"BoolType",
"BufferDict",
"CallStack",
"Capsule",
"ClassType",
"Code",
"CompleteArgumentSpec",
"ComplexType",
"ConcreteModuleType",
"ConcreteModuleTypeBuilder",
"DeepCopyMemoTable",
"DeserializationStorageContext",
"DeviceObjType",
"DictType",
"DispatchKey",
"DispatchKeySet",
"EnumType",
"ExcludeDispatchKeyGuard",
"ExecutionPlan",
"FileCheck",
"FloatType",
"FunctionSchema",
"Gradient",
"Graph",
"GraphExecutorState",
"IODescriptor",
"InferredType",
"IntType",
"InterfaceType",
"ListType",
"LockingLogger",
"MobileOptimizerType",
"ModuleDict",
"Node",
"NoneType",
"NoopLogger",
"NumberType",
"OperatorInfo",
"OptionalType",
"ParameterDict",
"PyObjectType",
"PyTorchFileReader",
"PyTorchFileWriter",
"RRefType",
"ScriptClass",
"ScriptClassFunction",
"ScriptDict",
"ScriptDictIterator",
"ScriptDictKeyIterator",
"ScriptList",
"ScriptListIterator",
"ScriptMethod",
"ScriptModule",
"ScriptModuleSerializer",
"ScriptObject",
"ScriptObjectProperty",
"SerializationStorageContext",
"StaticModule",
"StringType",
"SymIntType",
"SymBoolType",
"ThroughputBenchmark",
"TracingState",
"TupleType",
"Type",
"UnionType",
"Use",
"Value",
# torch.cuda
"BFloat16Storage",
"BFloat16Tensor",
"BoolStorage",
"BoolTensor",
"ByteStorage",
"ByteTensor",
"CharStorage",
"CharTensor",
"ComplexDoubleStorage",
"ComplexFloatStorage",
"CudaError",
"DeferredCudaCallError",
"DoubleStorage",
"DoubleTensor",
"FloatStorage",
"FloatTensor",
"HalfStorage",
"HalfTensor",
"IntStorage",
"IntTensor",
"LongStorage",
"LongTensor",
"ShortStorage",
"ShortTensor",
"cudaStatus",
# torch.cuda._sanitizer
"Access",
"AccessType",
"Await",
"CUDASanitizer",
"CUDASanitizerDispatchMode",
"CUDASanitizerErrors",
"EventHandler",
"SynchronizationError",
"UnsynchronizedAccessError",
# torch.distributed.elastic.multiprocessing.errors
"ChildFailedError",
"ProcessFailure",
# torch.distributions.constraints
"cat",
"greater_than",
"greater_than_eq",
"half_open_interval",
"independent",
"integer_interval",
"interval",
"less_than",
"multinomial",
"stack",
# torch.distributions.transforms
"AffineTransform",
"CatTransform",
"ComposeTransform",
"CorrCholeskyTransform",
"CumulativeDistributionTransform",
"ExpTransform",
"IndependentTransform",
"PowerTransform",
"ReshapeTransform",
"SigmoidTransform",
"SoftmaxTransform",
"SoftplusTransform",
"StackTransform",
"StickBreakingTransform",
"TanhTransform",
"Transform",
# torch.jit
"CompilationUnit",
"Error",
"Future",
"ScriptFunction",
# torch.onnx
"CheckerError",
"ExportTypes",
# torch.backends
"ContextProp",
"PropModule",
# torch.backends.cuda
"cuBLASModule",
"cuFFTPlanCache",
"cuFFTPlanCacheAttrContextProp",
"cuFFTPlanCacheManager",
# torch.distributed.algorithms.ddp_comm_hooks
"DDPCommHookType",
# torch.jit.mobile
"LiteScriptModule",
# torch.ao.nn.quantized.modules
"DeQuantize",
"Quantize",
# torch.utils.backcompat
"Warning",
]
# The suffix(es) of source filenames.
# You can specify multiple suffix as a list of string:
#
# source_suffix = ['.rst', '.md']
source_suffix = ".rst"
# The master toctree document.
master_doc = "index"
# General information about the project.
project = "PyTorch"
copyright = "2023, PyTorch Contributors"
author = "PyTorch Contributors"
torch_version = str(torch.__version__)
# The version info for the project you're documenting, acts as replacement for
# |version| and |release|, also used in various other places throughout the
# built documents.
#
# The short X.Y version.
# TODO: change to [:2] at v1.0
version = "main (" + torch_version + " )"
# The full version, including alpha/beta/rc tags.
# TODO: verify this works as expected
release = "main"
# Customized html_title here.
# Default is " ".join(project, release, "documentation") if not set
if RELEASE:
# Turn 1.11.0aHASH into 1.11
# Note: the release candidates should no longer have the aHASH suffix, but in any
# case we wish to leave only major.minor, even for rc builds.
version = ".".join(torch_version.split(".")[:2])
html_title = " ".join((project, version, "documentation"))
release = version
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
#
# This is also used if you do content translation via gettext catalogs.
# Usually you set "language" from the command line for these cases.
language = "en"
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This patterns also effect to html_static_path and html_extra_path
exclude_patterns = []
# The name of the Pygments (syntax highlighting) style to use.
pygments_style = "sphinx"
# If true, `todo` and `todoList` produce output, else they produce nothing.
todo_include_todos = True
# Disable docstring inheritance
autodoc_inherit_docstrings = False
# Show type hints in the description
autodoc_typehints = "description"
# Add parameter types if the parameter is documented in the docstring
autodoc_typehints_description_target = "documented_params"
# Type aliases for common types
# Sphinx type aliases only works with Postponed Evaluation of Annotations
# (PEP 563) enabled (via `from __future__ import annotations`), which keeps the
# type annotations in string form instead of resolving them to actual types.
# However, PEP 563 does not work well with JIT, which uses the type information
# to generate the code. Therefore, the following dict does not have any effect
# until PEP 563 is supported by JIT and enabled in files.
autodoc_type_aliases = {
"_size_1_t": "int or tuple[int]",
"_size_2_t": "int or tuple[int, int]",
"_size_3_t": "int or tuple[int, int, int]",
"_size_4_t": "int or tuple[int, int, int, int]",
"_size_5_t": "int or tuple[int, int, int, int, int]",
"_size_6_t": "int or tuple[int, int, int, int, int, int]",
"_size_any_opt_t": "int or None or tuple",
"_size_2_opt_t": "int or None or 2-tuple",
"_size_3_opt_t": "int or None or 3-tuple",
"_ratio_2_t": "float or tuple[float, float]",
"_ratio_3_t": "float or tuple[float, float, float]",
"_ratio_any_t": "float or tuple",
"_tensor_list_t": "Tensor or tuple[Tensor]",
}
# Enable overriding of function signatures in the first line of the docstring.
autodoc_docstring_signature = True
# -- katex javascript in header
#
# def setup(app):
# app.add_javascript("https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.js")
# -- Options for HTML output ----------------------------------------------
#
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
#
#
html_theme = "pytorch_sphinx_theme"
html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()]
# Theme options are theme-specific and customize the look and feel of a theme
# further. For a list of options available for each theme, see the
# documentation.
html_theme_options = {
"pytorch_project": "docs",
"canonical_url": "https://pytorch.org/docs/stable/",
"collapse_navigation": False,
"display_version": True,
"logo_only": True,
"analytics_id": "GTM-T8XT4PS",
}
html_logo = "_static/img/pytorch-logo-dark-unstable.png"
if RELEASE:
html_logo = "_static/img/pytorch-logo-dark.svg"
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ["_static"]
html_css_files = [
"css/jit.css",
]
from sphinx.ext.coverage import CoverageBuilder
def coverage_post_process(app, exception):
if exception is not None:
return
# Only run this test for the coverage build
if not isinstance(app.builder, CoverageBuilder):
return
if not torch.distributed.is_available():
raise RuntimeError(
"The coverage tool cannot run with a version "
"of PyTorch that was built with USE_DISTRIBUTED=0 "
"as this module's API changes."
)
# These are all the modules that have "automodule" in an rst file
# These modules are the ones for which coverage is checked
# Here, we make sure that no module is missing from that list
modules = app.env.domaindata["py"]["modules"]
# We go through all the torch submodules and make sure they are
# properly tested
missing = set()
def is_not_internal(modname):
split_name = modname.split(".")
for name in split_name:
if name[0] == "_":
return False
return True
# The walk function does not return the top module
if "torch" not in modules:
missing.add("torch")
for _, modname, ispkg in pkgutil.walk_packages(
path=torch.__path__, prefix=torch.__name__ + "."
):
if ispkg and is_not_internal(modname):
if modname not in modules:
missing.add(modname)
output = []
if missing:
mods = ", ".join(missing)
output.append(
f"\nYou added the following module(s) to the PyTorch namespace '{mods}' "
"but they have no corresponding entry in a doc .rst file. You should "
"either make sure that the .rst file that contains the module's documentation "
"properly contains either '.. automodule:: mod_name' (if you do not want "
"the paragraph added by the automodule, you can simply use '.. py:module:: mod_name') "
" or make the module private (by appending an '_' at the beginning of its name)."
)
# The output file is hard-coded by the coverage tool
# Our CI is setup to fail if any line is added to this file
output_file = path.join(app.outdir, "python.txt")
if output:
with open(output_file, "a") as f:
for o in output:
f.write(o)
def process_docstring(app, what_, name, obj, options, lines):
"""
Custom process to transform docstring lines Remove "Ignore" blocks
Args:
app (sphinx.application.Sphinx): the Sphinx application object
what (str):
the type of the object which the docstring belongs to (one of
"module", "class", "exception", "function", "method", "attribute")
name (str): the fully qualified name of the object
obj: the object itself
options: the options given to the directive: an object with
attributes inherited_members, undoc_members, show_inheritance
and noindex that are true if the flag option of same name was
given to the auto directive
lines (List[str]): the lines of the docstring, see above
References:
https://www.sphinx-doc.org/en/1.5.1/_modules/sphinx/ext/autodoc.html
https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html
"""
import re
remove_directives = [
# Remove all xdoctest directives
re.compile(r"\s*>>>\s*#\s*x?doctest:\s*.*"),
re.compile(r"\s*>>>\s*#\s*x?doc:\s*.*"),
]
filtered_lines = [
line for line in lines if not any(pat.match(line) for pat in remove_directives)
]
# Modify the lines inplace
lines[:] = filtered_lines
# make sure there is a blank line at the end
if lines and lines[-1].strip():
lines.append("")
# Called automatically by Sphinx, making this `conf.py` an "extension".
def setup(app):
# NOTE: in Sphinx 1.8+ `html_css_files` is an official configuration value
# and can be moved outside of this function (and the setup(app) function
# can be deleted).
html_css_files = [
"https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css"
]
# In Sphinx 1.8 it was renamed to `add_css_file`, 1.7 and prior it is
# `add_stylesheet` (deprecated in 1.8).
add_css = getattr(app, "add_css_file", app.add_stylesheet)
for css_file in html_css_files:
add_css(css_file)
app.connect("build-finished", coverage_post_process)
app.connect("autodoc-process-docstring", process_docstring)
# From PyTorch 1.5, we now use autogenerated files to document classes and
# functions. This breaks older references since
# https://pytorch.org/docs/stable/torch.html#torch.flip
# moved to
# https://pytorch.org/docs/stable/generated/torch.flip.html
# which breaks older links from blog posts, stack overflow answers and more.
# To mitigate that, we add an id="torch.flip" in an appropriated place
# in torch.html by overriding the visit_reference method of html writers.
# Someday this can be removed, once the old links fade away
from sphinx.writers import html, html5
def replace(Klass):
old_call = Klass.visit_reference
def visit_reference(self, node):
if "refuri" in node and "generated" in node.get("refuri"):
ref = node.get("refuri")
ref_anchor = ref.split("#")
if len(ref_anchor) > 1:
# Only add the id if the node href and the text match,
# i.e. the href is "torch.flip#torch.flip" and the content is
# "torch.flip" or "flip" since that is a signal the node refers
# to autogenerated content
anchor = ref_anchor[1]
txt = node.parent.astext()
if txt == anchor or txt == anchor.split(".")[-1]:
self.body.append(f'<p id="{ref_anchor[1]}"/>')
return old_call(self, node)
Klass.visit_reference = visit_reference
replace(html.HTMLTranslator)
replace(html5.HTML5Translator)
# -- Options for HTMLHelp output ------------------------------------------
# Output file base name for HTML help builder.
htmlhelp_basename = "PyTorchdoc"
# -- Options for LaTeX output ---------------------------------------------
latex_elements = {
# The paper size ('letterpaper' or 'a4paper').
#
# 'papersize': 'letterpaper',
# The font size ('10pt', '11pt' or '12pt').
#
# 'pointsize': '10pt',
# Additional stuff for the LaTeX preamble.
#
# 'preamble': '',
# Latex figure (float) alignment
#
# 'figure_align': 'htbp',
}
# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title,
# author, documentclass [howto, manual, or own class]).
latex_documents = [
(
master_doc,
"pytorch.tex",
"PyTorch Documentation",
"Torch Contributors",
"manual",
),
]
# -- Options for manual page output ---------------------------------------
# One entry per manual page. List of tuples
# (source start file, name, description, authors, manual section).
man_pages = [(master_doc, "PyTorch", "PyTorch Documentation", [author], 1)]
# -- Options for Texinfo output -------------------------------------------
# Grouping the document tree into Texinfo files. List of tuples
# (source start file, target name, title, author,
# dir menu entry, description, category)
texinfo_documents = [
(
master_doc,
"PyTorch",
"PyTorch Documentation",
author,
"PyTorch",
"One line description of project.",
"Miscellaneous",
),
]
# Example configuration for intersphinx: refer to the Python standard library.
intersphinx_mapping = {
"python": ("https://docs.python.org/3", None),
"numpy": ("https://numpy.org/doc/stable", None),
}
import sphinx.ext.doctest
# -- A patch that prevents Sphinx from cross-referencing ivar tags -------
# See http://stackoverflow.com/a/41184353/3343043
from docutils import nodes
from sphinx import addnodes
from sphinx.util.docfields import TypedField
# Without this, doctest adds any example with a `>>>` as a test
doctest_test_doctest_blocks = ""
doctest_default_flags = sphinx.ext.doctest.doctest.ELLIPSIS
doctest_global_setup = """
import torch
try:
import torchvision
except ImportError:
torchvision = None
"""
def patched_make_field(self, types, domain, items, **kw):
# `kw` catches `env=None` needed for newer sphinx while maintaining
# backwards compatibility when passed along further down!
# type: (List, unicode, Tuple) -> nodes.field
def handle_item(fieldarg, content):
par = nodes.paragraph()
par += addnodes.literal_strong("", fieldarg) # Patch: this line added
# par.extend(self.make_xrefs(self.rolename, domain, fieldarg,
# addnodes.literal_strong))
if fieldarg in types:
par += nodes.Text(" (")
# NOTE: using .pop() here to prevent a single type node to be
# inserted twice into the doctree, which leads to
# inconsistencies later when references are resolved
fieldtype = types.pop(fieldarg)
if len(fieldtype) == 1 and isinstance(fieldtype[0], nodes.Text):
typename = fieldtype[0].astext()
builtin_types = ["int", "long", "float", "bool", "type"]
for builtin_type in builtin_types:
pattern = rf"(?<![\w.]){builtin_type}(?![\w.])"
repl = f"python:{builtin_type}"
typename = re.sub(pattern, repl, typename)
par.extend(
self.make_xrefs(
self.typerolename,
domain,
typename,
addnodes.literal_emphasis,
**kw,
)
)
else:
par += fieldtype
par += nodes.Text(")")
par += nodes.Text(" -- ")
par += content
return par
fieldname = nodes.field_name("", self.label)
if len(items) == 1 and self.can_collapse:
fieldarg, content = items[0]
bodynode = handle_item(fieldarg, content)
else:
bodynode = self.list_type()
for fieldarg, content in items:
bodynode += nodes.list_item("", handle_item(fieldarg, content))
fieldbody = nodes.field_body("", bodynode)
return nodes.field("", fieldname, fieldbody)
TypedField.make_field = patched_make_field
copybutton_prompt_text = r">>> |\.\.\. "
copybutton_prompt_is_regexp = True