forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
batch_bucketize_op.cc
126 lines (107 loc) · 4.14 KB
/
batch_bucketize_op.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#include "batch_bucketize_op.h"
#include "caffe2/core/context.h"
#include "caffe2/core/tensor.h"
namespace caffe2 {
template <>
bool BatchBucketizeOp<CPUContext>::RunOnDevice() {
auto& feature = Input(FEATURE);
auto& indices = Input(INDICES);
auto& boundaries = Input(BOUNDARIES);
auto& lengths = Input(LENGTHS);
CAFFE_ENFORCE_EQ(lengths.dim(), 1);
CAFFE_ENFORCE_EQ(indices.dim(), 1);
CAFFE_ENFORCE_EQ(boundaries.dim(), 1);
CAFFE_ENFORCE_EQ(feature.dim(), 2);
CAFFE_ENFORCE_EQ(lengths.numel(), indices.numel());
const auto* lengths_data = lengths.template data<int32_t>();
const auto* indices_data = indices.template data<int32_t>();
const auto* boundaries_data = boundaries.template data<float>();
const auto* feature_data = feature.template data<float>();
auto batch_size = feature.size(0);
auto feature_dim = feature.size(1);
auto output_dim = indices.numel();
int64_t length_sum = 0;
for (int64_t i = 0; i < lengths.numel(); i++) {
CAFFE_ENFORCE_GE(feature_dim, indices_data[i]);
length_sum += lengths_data[i];
}
CAFFE_ENFORCE_EQ(length_sum, boundaries.numel());
int64_t lower_bound = 0;
auto* output = Output(O, {batch_size, output_dim}, at::dtype<int32_t>());
auto* output_data = output->template mutable_data<int32_t>();
for (int64_t i = 0; i < batch_size; i++) {
lower_bound = 0;
for (int64_t j = 0; j < output_dim; j++) {
for (int64_t k = 0; k <= lengths_data[j]; k++) {
if (k == lengths_data[j] ||
feature_data[i * feature_dim + indices_data[j]] <=
boundaries_data[lower_bound + k]) {
output_data[i * output_dim + j] = k;
break;
} else {
continue;
}
}
lower_bound += lengths_data[j];
}
}
return true;
}
REGISTER_CPU_OPERATOR(BatchBucketize, BatchBucketizeOp<CPUContext>);
OPERATOR_SCHEMA(BatchBucketize)
.NumInputs(4)
.NumOutputs(1)
.SetDoc(R"DOC(
Bucketize the float_features into sparse features.
The float_features is a N * D tensor where N is the batch_size, and D is the feature_dim.
The indices is a 1D tensor containing the indices of the features that need to be bucketized.
The lengths is a 1D tensor that splits the following 'boundaries' argument.
The boundaries is a 1D tensor containing the border list for each feature.
With in each batch, `indices` should not have duplicate number,
and the number of elements in `indices` should be less than or equal to `D`.
Each element in `lengths` vector (lengths[`i`]) represents
the number of boundaries in the sub border list.
The sum of all elements in `lengths` must be equal to the size of `boundaries`.
If lengths[0] = 2, the first sub border list is [0.5, 1.0], which separate the
value to (-inf, 0.5], (0,5, 1.0], (1.0, inf). The bucketized feature will have
three possible values (i.e. 0, 1, 2).
For example, with input:
float_features = [[1.42, 2.07, 3.19, 0.55, 4.32],
[4.57, 2.30, 0.84, 4.48, 3.09],
[0.89, 0.26, 2.41, 0.47, 1.05],
[0.03, 2.97, 2.43, 4.36, 3.11],
[2.74, 5.77, 0.90, 2.63, 0.38]]
indices = [0, 1, 4]
lengths = [2, 3, 1]
boundaries = [0.5, 1.0, 1.5, 2.5, 3.5, 2.5]
The output is:
output =[[2, 1, 1],
[2, 1, 1],
[1, 0, 0],
[0, 2, 1],
[2, 3, 0]]
after running this operator.
)DOC")
.Input(
0,
"float_features",
"2-D dense tensor, the second dimension must be greater or equal to the indices dimension")
.Input(
1,
"indices",
"Flatten tensor, containing the indices of `float_features` to be bucketized. The datatype must be int32.")
.Input(
2,
"lengths",
"Flatten tensor, the size must be equal to that of `indices`. The datatype must be int32.")
.Input(
3,
"boundaries",
"Flatten tensor, dimension has to match the sum of lengths")
.Output(
0,
"bucketized_feat",
"2-D dense tensor, with 1st dim = float_features.dim(0), 2nd dim = size(indices)"
"in the arg list, the tensor is of the same data type as `feature`.");
NO_GRADIENT(BatchBucketize);
} // namespace caffe2