forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ForeachFunctors.cuh
694 lines (642 loc) · 22.3 KB
/
ForeachFunctors.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
#pragma once
#include <ATen/OpMathType.h>
#include <ATen/native/ForeachUtils.h>
#include <ATen/native/cuda/MultiTensorApply.cuh>
#include <ATen/native/cuda/Pow.cuh>
namespace at::native {
namespace {
// TODO(crcrpar): Handle version bump in codegen.
// rel:
// https://github.com/pytorch/pytorch/blob/9cf84347767c8abb8feba18a9a1baba321eeb8b9/tools/autograd/gen_inplace_or_view_type.py#L481-L482
inline void increment_version(TensorList tensors) {
for (const auto& t : tensors) {
t.unsafeGetTensorImpl()->bump_version();
}
}
// Initializes args and checks if all args are aligned
template <int depth, typename T>
__device__ bool init_args(
T** args,
TensorListMetadata<depth>& tl,
const int64_t chunk_idx,
const int64_t chunk_size,
const int64_t tensor_loc) {
bool all_aligned = true;
for (int i = 0; i < depth; i++) {
args[i] = (T*)tl.addresses[i][tensor_loc];
args[i] += chunk_idx * chunk_size;
if (!is_aligned(args[i])) {
all_aligned = false;
}
}
return all_aligned;
}
// Initializes args and checks if all args are aligned
template <int depth, typename T, typename T2>
__device__ bool init_args(
T** args,
TensorListScalarListMetadata<T2, depth>& tl,
const int64_t chunk_idx,
const int64_t chunk_size,
const int64_t tensor_loc) {
bool all_aligned = true;
for (int i = 0; i < depth; i++) {
args[i] = (T*)tl.addresses[i][tensor_loc];
args[i] += chunk_idx * chunk_size;
if (!is_aligned(args[i])) {
all_aligned = false;
}
}
return all_aligned;
}
template <int depth, typename T>
__device__ bool init_args(
T** args,
FusedOptimizerTensorListMetadata<depth>& tl,
const int64_t chunk_idx,
const int64_t chunk_size,
const int64_t tensor_loc) {
bool all_aligned = true;
for (int i = 0; i < depth; i++) {
args[i] = (T*)tl.addresses[i][tensor_loc];
args[i] += chunk_idx * chunk_size;
if (!is_aligned(args[i])) {
all_aligned = false;
}
}
return all_aligned;
}
template <int depth, typename T>
__device__ void load_args(
T r_args[][kILP],
T** args,
const int64_t i_start,
const int64_t chunk_size,
const int64_t n) {
#pragma unroll
for (int ii = 0; ii < kILP; ii++) {
const auto i = i_start + threadIdx.x + ii * blockDim.x;
for (int r_index = 0; r_index < depth; r_index++) {
r_args[r_index][ii] = 0;
if (i < n && i < chunk_size) {
r_args[r_index][ii] = args[r_index][i];
}
}
}
}
template <typename T>
__device__ void store_args(
T* dst,
T* src,
const int64_t i_start,
const int64_t chunk_size,
const int64_t n) {
#pragma unroll
for (int ii = 0; ii < kILP; ii++) {
const int64_t i = i_start + threadIdx.x + ii * blockDim.x;
if (i < n && i < chunk_size)
dst[i] = src[ii];
}
}
template <int res_arg_index, typename Op, typename T, typename opmath_t>
__device__ __forceinline__ void binary_op_scalar(
T r_args[][kILP],
T** args,
opmath_t scalar,
const int64_t n,
const int64_t chunk_size,
const bool all_aligned,
Op op) {
// to make things simple, we put aligned case in a different code path
if (n % kILP == 0 && chunk_size % kILP == 0 && all_aligned) {
for (int64_t i_start = threadIdx.x;
i_start * kILP < n && i_start * kILP < chunk_size;
i_start += blockDim.x) {
// load
load_store(r_args[0], args[0], 0, i_start);
#pragma unroll
for (int ii = 0; ii < kILP; ii++) {
r_args[0][ii] = static_cast<T>(
op(static_cast<opmath_t>(r_args[0][ii]),
static_cast<opmath_t>(scalar)));
}
// store
load_store(args[res_arg_index], r_args[0], i_start, 0);
}
} else {
for (int64_t i_start = 0; i_start < n && i_start < chunk_size;
i_start += blockDim.x * kILP) {
// Regardless if depth is 1 (for inplace) or 2 (for out of place), r_args
// has depth 1
load_args<1>(r_args, args, i_start, chunk_size, n);
#pragma unroll
for (int ii = 0; ii < kILP; ii++) {
r_args[0][ii] = static_cast<T>(
op(static_cast<opmath_t>(r_args[0][ii]),
static_cast<opmath_t>(scalar)));
}
store_args(args[res_arg_index], r_args[0], i_start, chunk_size, n);
}
}
}
template <int res_arg_index, typename Op, typename T, typename scalar_t = T>
__device__ __forceinline__ void binary_op_scalar_tensor(
T r_args[][kILP],
T** args,
scalar_t* scalar,
const int64_t n,
const int chunk_size,
const bool all_aligned,
Op op) {
using opmath_t = at::opmath_type<T>;
// to make things simple, we put aligned case in a different code path
if (n % kILP == 0 && chunk_size % kILP == 0 && all_aligned) {
for (int64_t i_start = threadIdx.x;
i_start * kILP < n && i_start * kILP < chunk_size;
i_start += blockDim.x) {
// load
load_store(r_args[0], args[0], 0, i_start);
#pragma unroll
for (int ii = 0; ii < kILP; ii++) {
r_args[0][ii] = static_cast<T>(
op(static_cast<opmath_t>(r_args[0][ii]),
static_cast<opmath_t>(*scalar)));
}
// store
load_store(args[res_arg_index], r_args[0], i_start, 0);
}
} else {
for (int64_t i_start = 0; i_start < n && i_start < chunk_size;
i_start += blockDim.x * kILP) {
// Regardless if depth is 1 (for inplace) or 2 (for out of place), r_args
// has depth 1
load_args<1>(r_args, args, i_start, chunk_size, n);
#pragma unroll
for (int ii = 0; ii < kILP; ii++) {
r_args[0][ii] = static_cast<T>(
op(static_cast<opmath_t>(r_args[0][ii]),
static_cast<opmath_t>(*scalar)));
}
store_args(args[res_arg_index], r_args[0], i_start, chunk_size, n);
}
}
}
template <int res_arg_index, typename Op, typename T, typename opmath_t>
__device__ __forceinline__ void pointwise_op_scalar(
T r_args[][kILP],
T** args,
opmath_t scalar,
const int64_t n,
const int64_t chunk_size,
const bool all_aligned,
Op op) {
// to make things simple, we put aligned case in a different code path
if (n % kILP == 0 && chunk_size % kILP == 0 && all_aligned) {
for (int64_t i_start = threadIdx.x;
i_start * kILP < n && i_start * kILP < chunk_size;
i_start += blockDim.x) {
// load
load_store(r_args[0], args[0], 0, i_start);
load_store(r_args[1], args[1], 0, i_start);
load_store(r_args[2], args[2], 0, i_start);
#pragma unroll
for (int ii = 0; ii < kILP; ii++) {
r_args[0][ii] = static_cast<T>(
static_cast<opmath_t>(r_args[0][ii]) +
scalar *
op(static_cast<opmath_t>(r_args[1][ii]),
static_cast<opmath_t>(r_args[2][ii])));
}
// store
load_store(args[res_arg_index], r_args[0], i_start, 0);
}
} else {
for (int64_t i_start = 0; i_start < n && i_start < chunk_size;
i_start += blockDim.x * kILP) {
// Regardless if depth is 3 (for inplace) or 4 (for out of place), r_args
// has depth 3
load_args<3>(r_args, args, i_start, chunk_size, n);
#pragma unroll
for (int ii = 0; ii < kILP; ii++) {
r_args[0][ii] = static_cast<T>(
static_cast<opmath_t>(r_args[0][ii]) +
scalar *
op(static_cast<opmath_t>(r_args[1][ii]),
static_cast<opmath_t>(r_args[2][ii])));
}
store_args(args[res_arg_index], r_args[0], i_start, chunk_size, n);
}
}
}
//
// Binary Functors
//
template <typename T, int depth, int r_args_depth, int res_arg_index>
struct BinaryOpScalarFunctor {
using opmath_t = at::opmath_type<T>;
template <typename Op>
__device__ __forceinline__ void operator()(
int chunk_size,
TensorListMetadata<depth>& tl,
Op op,
opmath_t scalar) {
const int tensor_loc = tl.block_to_tensor[blockIdx.x];
const int chunk_idx = tl.block_to_chunk[blockIdx.x];
auto n = tl.numel_for_tensor[tensor_loc];
T* args[depth];
const bool all_aligned =
init_args<depth>(args, tl, chunk_idx, chunk_size, tensor_loc);
n -= chunk_idx * chunk_size;
T r_args[r_args_depth][kILP];
binary_op_scalar<res_arg_index>(
r_args, args, scalar, n, chunk_size, all_aligned, op);
}
};
template <typename T, int depth, int r_args_depth, int res_arg_index>
struct BinaryOpScalarListFunctor {
using opmath_t = at::opmath_type<T>;
template <typename Op>
__device__ __forceinline__ void operator()(
int chunk_size,
TensorListScalarListMetadata<opmath_t, depth>& tl,
Op op) {
const auto tensor_loc = tl.block_to_tensor[blockIdx.x];
const auto chunk_idx = tl.block_to_chunk[blockIdx.x];
auto n = tl.numel_for_tensor[tensor_loc];
T* args[depth];
const bool all_aligned =
init_args<depth>(args, tl, chunk_idx, chunk_size, tensor_loc);
opmath_t scalar = tl.scalar_vals[tensor_loc];
n -= chunk_idx * chunk_size;
T r_args[r_args_depth][kILP];
binary_op_scalar<res_arg_index>(
r_args, args, scalar, n, chunk_size, all_aligned, op);
}
};
template <typename T, int depth, int r_args_depth, int res_arg_index>
struct BinaryOpListAlphaFunctor {
using opmath_t = at::opmath_type<T>;
template <typename Op>
__device__ __forceinline__ void operator()(
int chunk_size,
TensorListMetadata<depth>& tl,
Op op,
opmath_t alpha) {
const auto tensor_loc = tl.block_to_tensor[blockIdx.x];
const auto chunk_idx = tl.block_to_chunk[blockIdx.x];
auto n = tl.numel_for_tensor[tensor_loc];
T* args[depth];
const bool all_aligned =
init_args<depth>(args, tl, chunk_idx, chunk_size, tensor_loc);
n -= chunk_idx * chunk_size;
T r_args[r_args_depth][kILP];
// to make things simple, we put aligned case in a different code path
if (n % kILP == 0 && chunk_size % kILP == 0 && all_aligned) {
for (int64_t i_start = threadIdx.x;
i_start * kILP < n && i_start * kILP < chunk_size;
i_start += blockDim.x) {
// load
load_store(r_args[0], args[0], 0, i_start);
load_store(r_args[1], args[1], 0, i_start);
#pragma unroll
for (int ii = 0; ii < kILP; ii++) {
r_args[0][ii] = static_cast<T>(
op(static_cast<opmath_t>(r_args[0][ii]),
alpha * static_cast<opmath_t>(r_args[1][ii])));
}
// store
load_store(args[res_arg_index], r_args[0], i_start, 0);
}
} else {
for (int64_t i_start = 0; i_start < n && i_start < chunk_size;
i_start += blockDim.x * kILP) {
load_args<r_args_depth>(r_args, args, i_start, chunk_size, n);
#pragma unroll
for (int ii = 0; ii < kILP; ii++) {
r_args[0][ii] = static_cast<T>(
op(static_cast<opmath_t>(r_args[0][ii]),
alpha * static_cast<opmath_t>(r_args[1][ii])));
}
store_args(args[res_arg_index], r_args[0], i_start, chunk_size, n);
}
}
}
};
template <typename T, int depth, int r_args_depth, int res_arg_index>
struct BinaryOpScalarTensorFunctor {
using opmath_t = at::opmath_type<T>;
template <typename Op>
__device__ __forceinline__ void operator()(
int chunk_size,
TensorListMetadata<depth>& tl,
Op op,
T* scalar) {
const int tensor_loc = tl.block_to_tensor[blockIdx.x];
const int chunk_idx = tl.block_to_chunk[blockIdx.x];
auto n = tl.numel_for_tensor[tensor_loc];
T* args[depth];
const bool all_aligned =
init_args<depth>(args, tl, chunk_idx, chunk_size, tensor_loc);
n -= chunk_idx * chunk_size;
T r_args[r_args_depth][kILP];
binary_op_scalar_tensor<res_arg_index>(
r_args, args, scalar, n, chunk_size, all_aligned, op);
}
};
//
// Unary Functors
//
template <typename T, int depth, int r_args_depth, int res_arg_index>
struct ZeroFunctor {
__device__ __forceinline__ void operator()(
int chunk_size,
TensorListMetadata<1>& tl) {
const auto tensor_loc = tl.block_to_tensor[blockIdx.x];
const auto chunk_idx = tl.block_to_chunk[blockIdx.x];
auto n = tl.numel_for_tensor[tensor_loc];
T* args[depth];
const auto all_aligned =
init_args<depth>(args, tl, chunk_idx, chunk_size, tensor_loc);
n -= chunk_idx * chunk_size;
T r_args[r_args_depth][kILP];
// to make things simple, we put aligned case in a different code path
if (n % kILP == 0 && chunk_size % kILP == 0 && all_aligned) {
for (int64_t i_start = threadIdx.x;
i_start * kILP < n && i_start * kILP < chunk_size;
i_start += blockDim.x) {
#pragma unroll
for (int ii = 0; ii < kILP; ii++) {
r_args[0][ii] = 0;
}
// store
load_store(args[0], r_args[0], i_start, 0);
}
} else {
for (int64_t i_start = 0; i_start < n && i_start < chunk_size;
i_start += blockDim.x * kILP) {
#pragma unroll
for (int ii = 0; ii < kILP; ii++) {
r_args[0][ii] = 0;
}
store_args(args[res_arg_index], r_args[0], i_start, chunk_size, n);
}
}
}
};
template <typename T, int depth, int r_args_depth, int res_arg_index>
struct UnaryOpFunctor {
using opmath_t = at::opmath_type<T>;
template <typename Op>
__device__ __forceinline__ void operator()(
int chunk_size,
TensorListMetadata<depth>& tl,
Op op) {
const auto tensor_loc = tl.block_to_tensor[blockIdx.x];
const auto chunk_idx = tl.block_to_chunk[blockIdx.x];
auto n = tl.numel_for_tensor[tensor_loc];
T* args[depth];
bool all_aligned =
init_args<depth>(args, tl, chunk_idx, chunk_size, tensor_loc);
n -= chunk_idx * chunk_size;
T r_args[r_args_depth][kILP];
// to make things simple, we put aligned case in a different code path
if (n % kILP == 0 && chunk_size % kILP == 0 && all_aligned) {
for (int64_t i_start = threadIdx.x;
i_start * kILP < n && i_start * kILP < chunk_size;
i_start += blockDim.x) {
// load
load_store(r_args[0], args[0], 0, i_start);
#pragma unroll
for (int ii = 0; ii < kILP; ii++) {
r_args[0][ii] =
static_cast<T>(op(static_cast<opmath_t>(r_args[0][ii])));
}
// store
load_store(args[res_arg_index], r_args[0], i_start, 0);
}
} else {
for (int64_t i_start = 0; i_start < n && i_start < chunk_size;
i_start += blockDim.x * kILP) {
load_args<r_args_depth>(r_args, args, i_start, chunk_size, n);
#pragma unroll
for (int ii = 0; ii < kILP; ii++) {
r_args[0][ii] =
static_cast<T>(op(static_cast<opmath_t>(r_args[0][ii])));
}
store_args(args[res_arg_index], r_args[0], i_start, chunk_size, n);
}
}
}
};
//
// Pointwise Functors
//
template <typename T, int depth, int r_args_depth, int res_arg_index>
struct PointwiseOpScalarFunctor {
using opmath_t = at::opmath_type<T>;
template <typename Op>
__device__ __forceinline__ void operator()(
int chunk_size,
TensorListMetadata<depth>& tl,
Op op,
opmath_t scalar) {
const auto tensor_loc = tl.block_to_tensor[blockIdx.x];
const auto chunk_idx = tl.block_to_chunk[blockIdx.x];
auto n = tl.numel_for_tensor[tensor_loc];
T* args[depth];
const bool all_aligned =
init_args<depth>(args, tl, chunk_idx, chunk_size, tensor_loc);
n -= chunk_idx * chunk_size;
T r_args[r_args_depth][kILP];
pointwise_op_scalar<res_arg_index>(
r_args, args, scalar, n, chunk_size, all_aligned, op);
}
};
template <typename T, int depth, int r_args_depth, int res_arg_index>
struct PointwiseOpScalarListFunctor {
using opmath_t = at::opmath_type<T>;
template <typename Op>
__device__ __forceinline__ void operator()(
int chunk_size,
TensorListScalarListMetadata<opmath_t, depth>& tl,
Op op) {
const auto tensor_loc = tl.block_to_tensor[blockIdx.x];
const auto chunk_idx = tl.block_to_chunk[blockIdx.x];
auto n = tl.numel_for_tensor[tensor_loc];
T* args[depth];
const bool all_aligned =
init_args<depth>(args, tl, chunk_idx, chunk_size, tensor_loc);
opmath_t scalar = tl.scalar_vals[tensor_loc];
n -= chunk_idx * chunk_size;
T r_args[r_args_depth][kILP];
pointwise_op_scalar<res_arg_index>(
r_args, args, scalar, n, chunk_size, all_aligned, op);
}
};
template <typename T, int depth>
struct PointwiseOpListFunctor {
using opmath_t = at::opmath_type<T>;
template <typename Op>
__device__ __forceinline__ void operator()(
int chunk_size,
TensorListMetadata<depth>& tl,
Op op) {
const auto tensor_loc = tl.block_to_tensor[blockIdx.x];
const auto chunk_idx = tl.block_to_chunk[blockIdx.x];
auto n = tl.numel_for_tensor[tensor_loc];
T* args[depth];
const bool all_aligned =
init_args<depth>(args, tl, chunk_idx, chunk_size, tensor_loc);
n -= chunk_idx * chunk_size;
T r_args[depth - 1][kILP];
// to make things simple, we put aligned case in a different code path
if (n % kILP == 0 && chunk_size % kILP == 0 && all_aligned) {
for (int64_t i_start = threadIdx.x;
i_start * kILP < n && i_start * kILP < chunk_size;
i_start += blockDim.x) {
// load
load_store(r_args[0], args[0], 0, i_start);
load_store(r_args[1], args[1], 0, i_start);
#pragma unroll
for (int ii = 0; ii < kILP; ii++) {
r_args[0][ii] = static_cast<T>(
op(static_cast<opmath_t>(r_args[0][ii]),
static_cast<opmath_t>(r_args[1][ii])));
}
// store
load_store(args[2], r_args[0], i_start, 0);
}
} else {
for (int64_t i_start = 0; i_start < n && i_start < chunk_size;
i_start += blockDim.x * kILP) {
load_args<depth - 1>(r_args, args, i_start, chunk_size, n);
#pragma unroll
for (int ii = 0; ii < kILP; ii++) {
r_args[0][ii] = static_cast<T>(
op(static_cast<opmath_t>(r_args[0][ii]),
static_cast<opmath_t>(r_args[1][ii])));
}
store_args(args[2], r_args[0], i_start, chunk_size, n);
}
}
}
};
template <typename T, int depth, int r_args_depth, int res_arg_index>
struct TernaryOpListFunctor {
using opmath_t = at::opmath_type<T>;
template <typename Op>
__device__ __forceinline__ void operator()(
int chunk_size,
TensorListMetadata<depth>& tl,
Op op) {
static_assert(depth == 3 || depth == 4, "");
static_assert(depth >= r_args_depth, "");
static_assert(res_arg_index == depth - 1 || res_arg_index == 0, "");
const auto tensor_loc = tl.block_to_tensor[blockIdx.x];
const auto chunk_idx = tl.block_to_chunk[blockIdx.x];
auto n = tl.numel_for_tensor[tensor_loc];
T* args[depth];
const bool all_aligned =
init_args<depth>(args, tl, chunk_idx, chunk_size, tensor_loc);
n -= chunk_idx * chunk_size;
T r_args[r_args_depth][kILP];
if (n % kILP == 0 && chunk_size % kILP == 0 && all_aligned) {
for (int64_t i_start = threadIdx.x;
i_start * kILP < n && i_start * kILP < chunk_size;
i_start += blockDim.x) {
load_store(r_args[0], args[0], 0, i_start);
load_store(r_args[1], args[1], 0, i_start);
load_store(r_args[2], args[2], 0, i_start);
#pragma unroll
for (int ii = 0; ii < kILP; ii++) {
r_args[0][ii] =
op(static_cast<opmath_t>(r_args[0][ii]),
static_cast<opmath_t>(r_args[1][ii]),
static_cast<opmath_t>(r_args[2][ii]));
}
load_store(args[res_arg_index], r_args[0], i_start, 0);
}
} else {
for (int64_t i_start = 0; i_start < n && i_start < chunk_size;
i_start += blockDim.x * kILP) {
load_args<r_args_depth>(r_args, args, i_start, chunk_size, n);
#pragma unroll
for (int ii = 0; ii < kILP; ii++) {
r_args[0][ii] =
op(static_cast<opmath_t>(r_args[0][ii]),
static_cast<opmath_t>(r_args[1][ii]),
static_cast<opmath_t>(r_args[2][ii]));
}
store_args(args[res_arg_index], r_args[0], i_start, chunk_size, n);
}
}
}
};
template <typename T, int depth, int r_args_depth, int res_arg_index>
struct TernaryOpScalarFunctor {
using opmath_t = at::opmath_type<T>;
template <typename Op>
__device__ __forceinline__ void operator()(
int chunk_size,
TensorListMetadata<depth>& tl,
Op op,
opmath_t alpha) {
static_assert(depth == 2 || depth == 3, "");
static_assert(depth >= r_args_depth, "");
static_assert(res_arg_index == depth - 1 || res_arg_index == 0, "");
const auto tensor_loc = tl.block_to_tensor[blockIdx.x];
const auto chunk_idx = tl.block_to_chunk[blockIdx.x];
auto n = tl.numel_for_tensor[tensor_loc];
T* args[depth];
const bool all_aligned =
init_args<depth>(args, tl, chunk_idx, chunk_size, tensor_loc);
n -= chunk_idx * chunk_size;
T r_args[r_args_depth][kILP];
// to make things simple, we put aligned case in a different code path
if (n % kILP == 0 && chunk_size % kILP == 0 && all_aligned) {
for (int64_t i_start = threadIdx.x;
i_start * kILP < n && i_start * kILP < chunk_size;
i_start += blockDim.x) {
// load
load_store(r_args[0], args[0], 0, i_start);
load_store(r_args[1], args[1], 0, i_start);
#pragma unroll
for (int ii = 0; ii < kILP; ii++) {
r_args[0][ii] =
op(static_cast<opmath_t>(r_args[0][ii]),
static_cast<opmath_t>(r_args[1][ii]),
alpha);
}
// store
load_store(args[res_arg_index], r_args[0], i_start, 0);
}
} else {
for (int64_t i_start = 0; i_start < n && i_start < chunk_size;
i_start += blockDim.x * kILP) {
load_args<r_args_depth>(r_args, args, i_start, chunk_size, n);
#pragma unroll
for (int ii = 0; ii < kILP; ii++) {
r_args[0][ii] =
op(static_cast<opmath_t>(r_args[0][ii]),
static_cast<opmath_t>(r_args[1][ii]),
alpha);
}
store_args(args[res_arg_index], r_args[0], i_start, chunk_size, n);
}
}
}
};
template <typename T>
struct power_functor {
C10_DEVICE T operator()(const T& a, const T& b) const {
return at::native::pow_(a, b);
}
};
template <typename T>
struct reverse_power_functor {
C10_DEVICE T operator()(const T& a, const T& b) const {
return at::native::pow_(b, a);
}
};
} // namespace
} // namespace at::native