forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MultinomialKernel.cpp
243 lines (210 loc) · 8.55 KB
/
MultinomialKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/Dispatch.h>
#include <ATen/core/DistributionsHelper.h>
#include <ATen/native/Copy.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/UnaryOps.h>
#include <ATen/native/cpu/Loops.h>
#include <c10/util/irange.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
#include <ATen/ops/empty.h>
#endif
namespace at::native {
namespace {
template <typename scalar_t>
void multinomial_with_replacement_apply(
Tensor& result,
const Tensor& self,
const int64_t n_sample,
c10::optional<Generator> generator) {
auto gen = get_generator_or_default<CPUGeneratorImpl>(
generator, detail::getDefaultCPUGenerator());
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(gen->mutex_);
int64_t n_categories = self.size(-1);
int64_t n_dist = self.dim() > 1 ? self.size(-2) : 1;
/* cumulative probability distribution vector */
Tensor cum_dist = at::empty({n_categories}, self.options());
const scalar_t* const self_ptr = self.data_ptr<scalar_t>();
scalar_t* const cum_dist_ptr = cum_dist.data_ptr<scalar_t>();
int64_t* const result_ptr = result.data_ptr<int64_t>();
auto self_stride_0 = self.dim() > 1 ? self.stride(-2) : 0;
auto self_stride_1 = self.stride(-1);
auto cum_dist_stride_0 = cum_dist.stride(0);
auto result_dist_stride_0 = result.dim() > 1 ? result.stride(-2) : 0;
auto result_dist_stride_1 = result.stride(-1);
for (const auto i : c10::irange(n_dist)) {
/* Get normalized cumulative distribution from prob distribution */
scalar_t sum = 0;
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
scalar_t val;
for (const auto j : c10::irange(n_categories)) {
val = self_ptr[i * self_stride_0 + j * self_stride_1];
TORCH_CHECK(
val >= 0,
"invalid multinomial distribution (encountering probability entry < 0)");
// NB: std::isfinite doesn't bode well with libc++ for half datatypes,
// so we manually cast it to a double and perform the check.
#if defined(_LIBCPP_VERSION)
TORCH_CHECK(
std::isfinite(static_cast<double>(val)),
"invalid multinomial distribution (encountering probability entry = infinity or NaN)");
#else
TORCH_CHECK(
std::isfinite(val),
"invalid multinomial distribution (encountering probability entry = infinity or NaN)");
#endif
sum += val;
cum_dist_ptr[j * cum_dist_stride_0] = sum;
}
TORCH_CHECK(
sum > 0,
"invalid multinomial distribution (sum of probabilities <= 0)");
/* normalize cumulative probability distribution so that last val is 1
i.e. doesn't assume original self row sums to one */
if ((sum > 0) || ((sum < 1.00001) && (sum > 0.99999))) {
for (const auto j : c10::irange(n_categories)) {
cum_dist_ptr[j * cum_dist_stride_0] /= sum;
}
}
for (const auto j : c10::irange(n_sample)) {
/* sample a probability mass from a uniform distribution */
at::uniform_real_distribution<double> uniform(0, 1);
double uniform_sample = uniform(gen);
/* Do a binary search for the slot in which the prob falls
ie cum_dist[row][slot-1] < uniform_prob < cum_distr[row][slot] */
int left_pointer = 0;
int right_pointer = n_categories;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int mid_pointer;
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
scalar_t cum_prob;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int sample_idx;
/* Make sure the last cumulative distribution bucket sums to 1 */
cum_dist_ptr[(n_categories - 1) * cum_dist_stride_0] = 1;
while (right_pointer - left_pointer > 0) {
mid_pointer = left_pointer + (right_pointer - left_pointer) / 2;
cum_prob = cum_dist_ptr[mid_pointer * cum_dist_stride_0];
if (cum_prob < uniform_sample) {
left_pointer = mid_pointer + 1;
} else {
right_pointer = mid_pointer;
}
}
sample_idx = left_pointer;
/* store in result tensor (will be incremented for lua compat by wrapper)
*/
result_ptr[i * result_dist_stride_0 + j * result_dist_stride_1] =
sample_idx;
}
}
}
template <>
void multinomial_with_replacement_apply<BFloat16>(
Tensor& result,
const Tensor& self,
const int64_t n_sample,
c10::optional<Generator> generator) {
auto gen = get_generator_or_default<CPUGeneratorImpl>(
generator, detail::getDefaultCPUGenerator());
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(gen->mutex_);
int64_t n_categories = self.size(-1);
int64_t n_dist = self.dim() > 1 ? self.size(-2) : 1;
/* cumulative probability distribution vector */
Tensor cum_dist = at::empty({n_categories}, self.options().dtype(kFloat));
const BFloat16* const self_ptr = self.data_ptr<BFloat16>();
float* const cum_dist_ptr = cum_dist.data_ptr<float>();
int64_t* const result_ptr = result.data_ptr<int64_t>();
auto self_stride_0 = self.dim() > 1 ? self.stride(-2) : 0;
auto self_stride_1 = self.stride(-1);
auto cum_dist_stride_0 = cum_dist.stride(0);
auto result_dist_stride_0 = result.dim() > 1 ? result.stride(-2) : 0;
auto result_dist_stride_1 = result.stride(-1);
for (const auto i : c10::irange(n_dist)) {
/* Get normalized cumulative distribution from prob distribution */
float sum = 0;
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
float val;
for (const auto j : c10::irange(n_categories)) {
val = self_ptr[i * self_stride_0 + j * self_stride_1];
TORCH_CHECK(
val >= 0,
"invalid multinomial distribution (encountering probability entry < 0)");
// NB: std::isfinite doesn't bode well with libc++ for half datatypes,
// so we manually cast it to a double and perform the check.
#if defined(_LIBCPP_VERSION)
TORCH_CHECK(
std::isfinite(static_cast<double>(val)),
"invalid multinomial distribution (encountering probability entry = infinity or NaN)");
#else
TORCH_CHECK(
std::isfinite(val),
"invalid multinomial distribution (encountering probability entry = infinity or NaN)");
#endif
sum += val;
cum_dist_ptr[j * cum_dist_stride_0] = sum;
}
TORCH_CHECK(
sum > 0,
"invalid multinomial distribution (sum of probabilities <= 0)");
/* normalize cumulative probability distribution so that last val is 1
i.e. doesn't assume original self row sums to one */
if ((sum > 0) || ((sum < 1.00001) && (sum > 0.99999))) {
for (const auto j : c10::irange(n_categories)) {
cum_dist_ptr[j * cum_dist_stride_0] /= sum;
}
}
for (const auto j : c10::irange(n_sample)) {
/* sample a probability mass from a uniform distribution */
at::uniform_real_distribution<double> uniform(0, 1);
double uniform_sample = uniform(gen);
/* Do a binary search for the slot in which the prob falls
ie cum_dist[row][slot-1] < uniform_prob < cum_distr[row][slot] */
int left_pointer = 0;
int right_pointer = n_categories;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int mid_pointer;
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
float cum_prob;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int sample_idx;
/* Make sure the last cumulative distribution bucket sums to 1 */
cum_dist_ptr[(n_categories - 1) * cum_dist_stride_0] = 1;
while (right_pointer - left_pointer > 0) {
mid_pointer = left_pointer + (right_pointer - left_pointer) / 2;
cum_prob = cum_dist_ptr[mid_pointer * cum_dist_stride_0];
if (cum_prob < uniform_sample) {
left_pointer = mid_pointer + 1;
} else {
right_pointer = mid_pointer;
}
}
sample_idx = left_pointer;
/* store in result tensor (will be incremented for lua compat by wrapper)
*/
result_ptr[i * result_dist_stride_0 + j * result_dist_stride_1] =
sample_idx;
}
}
}
static void multinomial_with_replacement_kernel_impl(
Tensor& result,
const Tensor& self,
const int64_t n_sample,
c10::optional<Generator> gen) {
AT_DISPATCH_FLOATING_TYPES_AND2(
kHalf, kBFloat16, self.scalar_type(), "multinomial", [&] {
multinomial_with_replacement_apply<scalar_t>(
result, self, n_sample, gen);
});
}
} // namespace
REGISTER_DISPATCH(
multinomial_with_replacement_stub,
&multinomial_with_replacement_kernel_impl);
} // namespace at::native