Skip to content

Latest commit

 

History

History
87 lines (54 loc) · 1.94 KB

README.md

File metadata and controls

87 lines (54 loc) · 1.94 KB

Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Paper: https://arxiv.org/abs/2102.06171.pdf

Original code: https://github.com/deepmind/deepmind-research/tree/master/nfnets

Do star this repository if it helps your work!

Note: Huge Credit to this comment for the pytorch implementation this repository is based on. Note: See this comment for a generic implementation for any optimizer as a temporary reference for anyone who needs it.

Installation

Install from PyPi:

pip3 install nfnets-keras

or install the latest code using:

pip3 install git+https://github.com/ypeleg/nfnets-keras

Usage

NFNetF Model

Use any of the NFNetF models like any other keras Model!

from nfnets_keras import NFNetF3

model = NFNetF3(include_top = True, num_classes = 10)
model.compile('adam', 'categorical_crossentropy')
model.fit(X, y)

WSConv2D

Use WSConv2D like any other keras.layer.

from nfnets_keras import WSConv2D

conv = Conv2D(16, 3)(l)
w_conv = WSConv2D(16, 3)(conv)

SGD_AGC - Adaptive Gradient Clipping

Similarly, use SGD_AGC like keras.optimizer.SGD

from nfnets_keras import SGD_AGC


model.compile( SGD_AGC(lr=1e-3), loss='categorical_crossentropy' )

TODO

  • WSConv2D
  • SGD - Adaptive Gradient Clipping
  • Function to automatically replace Convolutions in any module with WSConv2d
  • Documentation
  • NFNets
  • NF-ResNets

Credit for the original pytroch implementation

https://github.com/vballoli/nfnets-pytorch

Cite Original Work

To cite the original paper, use:

@article{brock2021high,
  author={Andrew Brock and Soham De and Samuel L. Smith and Karen Simonyan},
  title={High-Performance Large-Scale Image Recognition Without Normalization},
  journal={arXiv preprint arXiv:},
  year={2021}
}